Skip to main content
Log in

Osmoregulated Periplasmic Glucan Polymerization Requires Constant Protein Synthesis in Escherichia coli

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Osmoregulated periplasmic glucans are a family of oligosaccharides found in the periplasm of Gram negative bacteria. Mutants devoid of OPGs show strong reduction or absence of virulence on their hosts and display pleiotropic phenotype. Glucose is the sole constituent sugar and OPG level increases as the osmolarity of the medium decreases. OPG synthesis is regulated both at the transcriptional and at the enzymatic level. Data presented in this article indicate that in addition, OPG synthesis requires constant synthesis of protein indicating rapid turnover of one of the two proteins catalyzing glucose backbone of OPGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arellano-Reynoso B, Lapaque N, Salcedo S et al (2005) Cyclic beta-1, 2-glucan is a Brucella virulence factor required for intracellular survival. Nat Immunol 6:618–625

    Article  CAS  PubMed  Google Scholar 

  2. Bhagwat AA, Jun W, Lui L et al (2009) Osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium are required for optimal virulence in mice. Microbiology 155:229–237

    Article  CAS  PubMed  Google Scholar 

  3. Bohin JP (2000) Osmoregulated periplasmic glucans in Proteobacteria—a minireview. FEMS Microbiol Lett 186:11–19

    CAS  PubMed  Google Scholar 

  4. Bohin JP, Lacroix JM (2006) The periplasm. Washington DC, ASM Press

    Google Scholar 

  5. Bouchart F, Delangle A, Lemoine J et al (2007) Proteomic analysis of a non-virulent mutant of the phytopathogenic bacterium Erwinia chrysanthemi deficient in osmoregulated periplasmic glucans: change in protein expression is not restricted to the envelope, but affects general metabolism. Microbiology 153:760–767

    Article  CAS  PubMed  Google Scholar 

  6. Byers DM, Gong H (2007) Acyl carrier protein: structure-function relationships in a conserved multifunctional protein family. Biochem Cell Biol 85:649–662

    Article  CAS  PubMed  Google Scholar 

  7. Cogez V, Talaga P, Lemoine J et al (2001) Osmoregulated periplasmic glucans of Erwinia chrysanthemi. J Bacteriol 183:3127–3133

    Article  CAS  PubMed  Google Scholar 

  8. Dartigalongue C, Missiakas D, Raina S (2001) Characterization of the Escherichia coli σE regulon. J Biol Chem 276:20866–20875

    Article  CAS  PubMed  Google Scholar 

  9. Debarbieux L, Bohin A, Bohin JP (1997) Topological analysis of the membrane-bound glucosyltransferase, MdoH, required for osmoregulated periplasmic glucan synthesis in Escherichia coli. J Bacteriol 179:6692–6698

    CAS  PubMed  Google Scholar 

  10. Hanoulle X, Rollet E, Clantin B et al (2004) Structural analysis of Escherichia coli OpgG, a protein required for the biosynthesis of osmoregulated periplasmic glucans. J Mol Biol 342:195–205

    Article  CAS  PubMed  Google Scholar 

  11. Lacroix JM, Loubens I, Tempête M et al (1991) The mdoA locus of Escherichia coli consists of an operon under osmotic control. Mol Microbiol 5:1745–1753

    Article  CAS  PubMed  Google Scholar 

  12. Lacroix JM, Tempête M, Menichi B et al (1989) Molecular cloning and expression of a locus (mdoA) implicated in the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. Mol Microbiol 3:1173–1182

    Article  CAS  PubMed  Google Scholar 

  13. Lequette Y, Rollet E, Delangle A et al (2007) Linear osmoregulated periplasmic glucans are encoded by the opgGH locus of Pseudomonas aeruginosa. Microbiology 153:3255–3263

    Article  CAS  PubMed  Google Scholar 

  14. Mahajan-Miklos S, Tan MW, Rahme LG et al (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96:47–56

    Article  CAS  PubMed  Google Scholar 

  15. Mills D, Mukhopadhyay P (1990) Pseudomonas: biotransformation, pathogenesis, and evolving biotechnology. ASM Press, Washington DC

    Google Scholar 

  16. Neidhardt FC, Umbarger HE (1996) Escherichia coli and Salmonella typhimurium Cellular and molecular biology, 2nd edn. ASM Press, Washington DC

    Google Scholar 

  17. Page F, Altabe S, Hugouvieux-Cotte-Pattat N et al (2001) Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity. J Bacteriol 183:3134–3141

    Article  CAS  PubMed  Google Scholar 

  18. Rhodius VA, Suh WC, Nonaka G et al (2006) Conserved and variable functions of the σE stress response in related genomes. PLoS Biol 4:e2

    Article  PubMed  Google Scholar 

  19. Rumley MK, Therisod H, Weissborn AC et al (1992) Mechanisms of regulation of the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. J Biol Chem 267:11806–11810

    CAS  PubMed  Google Scholar 

  20. Schneider JE, Reinhold V, Rumley MK et al (1979) Structural studies of the membrane-derived oligosaccharides of Escherichia coli. J Biol Chem 254:10135–10138

    CAS  PubMed  Google Scholar 

  21. Talaga P, Fournet B, Bohin JP (1994) Periplasmic glucans of Pseudomonas syringae pv. syringae. J Bacteriol 176:6538–6544

    CAS  PubMed  Google Scholar 

  22. Thérisod H, Weissborn AC, Kennedy EP (1986) An essential function for acyl carrier protein in the biosynthesis of membrane-derived oligosaccharides of Escherichia coli. Proc Natl Acad Sci USA 83:7236–7240

    Article  PubMed  Google Scholar 

  23. Vinopal RT, Hillman JD, Schulman H et al (1975) New phosphoglucose isomerase mutants of Escherichia coli. J Bacteriol 122:1172–1174

    CAS  PubMed  Google Scholar 

  24. Weissborn AC, Rumley MK, Kennedy EP (1992) Isolation and characterization of Escherichia coli mutants blocked in production of membrane-derived oligosaccharides. J Bacteriol 174:4856–4859

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Centre National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-M. Lacroix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacroix, JM., Bohin, JP. Osmoregulated Periplasmic Glucan Polymerization Requires Constant Protein Synthesis in Escherichia coli . Curr Microbiol 61, 396–400 (2010). https://doi.org/10.1007/s00284-010-9625-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9625-2

Keywords

Navigation