Skip to main content
Log in

Identification of Actinomycetes Producing Phospholipase D with High Transphosphatidylation Activity

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Previously we isolated six actinomycetes strains, 9-4, 10-1, 10-2, 10-3, 10-6, and 21-4, that produce phospholipase D (PLD) with high transphosphatidylation activity. In this study, we identified these strains, and the PLD activities were compared with those of reference strains. 16S rDNA sequences and DNA–DNA hybridization tests indicated taxonomic affiliations of strain 9-6 with Streptomyces senoensis, strains 10-1 and 10-6 with S. vinaceus, and strains 10-2 and 10-3 with S. racemochromogenes. Strain 21-4, though identified as a Streptomyces sp., could not be identified with any known species. Meanwhile, most of the culture supernatants of reference strains demonstrated no or very weak PLD activity, while those of our strains exhibited significantly higher activity. All of the strains in this study were identified as Streptomyces species. The PLD activity of our strains exceeded most of the reference Streptomyces strains. The findings in this study imply that the Streptomyces strains, although they are members of the same species, can produce different quantities of PLD enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Doig SD, Diks RMM (2003) Toolbox for exchanging constituent fatty acids in lecithins. Eur J Lipid Technol 105:359–367

    Article  CAS  Google Scholar 

  2. Kudo S, Kuroda A (1990) Enzymatic production of transphosphatidylated lecithin and its use. Bio Ind 7:494–500 (in Japanese)

    CAS  Google Scholar 

  3. Suzuki S, Yamatoya H, Sakai M, Kataoka A, Furushiro M, Kudo S (2001) Oral administration of soybean lecithin transphosphatidylated phosphatidylserine improves memory impairment in aged rats. J Nutr 131:2951–2956

    CAS  PubMed  Google Scholar 

  4. Jorissen BL, Brouns F, Van Boxtel MPJ, Riedel WJ (2002) Safety of soy-derived phosphatidylserine in elderly people. Nutr Neurosci 5:337–343

    Article  CAS  PubMed  Google Scholar 

  5. Morris AJ, Frohman MA, Engebrecht J (1997) Measurement of phospholipase D activity. Anal Biochem 252:1–9

    Article  CAS  PubMed  Google Scholar 

  6. D’Arrigo P, de Ferra L, Piergianni V, Selva A, Servi S, Strini A (1996) Preparative transformation of natural phospholipids catalyzed by phospholipase D from Streptomyces. J Chem Soc Perkin Trans I 21:2651–2656

    Article  Google Scholar 

  7. Hirche F, Ulbrich-Hofmann R (2000) The interdependence of solvent, acceptor alcohol and enzyme source in transphosphatidylation by phospholipase D. Biocatal Biotransformation 18:343–353

    Article  CAS  Google Scholar 

  8. Takami M, Hidaka N, Suzuki Y (1994) Phospholipase D-catalyzed synthesis of phosphatidyl aromatic compounds. Biosci Biotechnol Biochem 58:2140–2144

    Article  CAS  Google Scholar 

  9. Nakazawa Y, Uchino M, Sagane Y, Sato H, Takano K (2009) Isolation and characterization of actinomycetes strains that produce phospholipase D having high transphosphatidylation activity. Microbiol Res 164:43–48

    Article  CAS  PubMed  Google Scholar 

  10. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  11. Rayner RW (1970) A mycological colour chart. Commonwealth Mycological Institute and British Mycological Society, Commonwealth Agricultural Bureaux, Kew, Surrey, UK

    Google Scholar 

  12. Saito H, Miura K (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629

    Article  CAS  PubMed  Google Scholar 

  13. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  14. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  15. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  16. Felsenstein J (1985) Conference limits on phylogenies: an approach using the bootstrap. Evolution 39:783–789

    Article  Google Scholar 

  17. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  18. Imamura S, Horiuti Y (1978) Enzymatic determination of phospholipase D activity with choline oxidase. J Biochem 83:677–680

    CAS  PubMed  Google Scholar 

  19. Hasegawa M, Ota N, Aisaka K (1992) Cloning and expression of phospholipase D-K gene of Streptomyces. Jpn Kokai Tokkyo Koho JP-04088981 (A-1992-0323)

  20. Iwasaki Y, Nakano H, Yamane T (1994) Phospholipase D from Streptomyces antibioticus: cloning, sequencing, expression and relationship to other phospholipases. Appl Microbiol Biotechnol 42:290–299

    CAS  PubMed  Google Scholar 

  21. Takahara M, Horyo K, Imamura S (1993) Cloning and expression of phospholipase D-P gene of Streptomyces. Jpn Kokai Tokkyo Koho JP-05252935 (A-1993-1005)

  22. Zambonelli C, Morandi P, Vanoni MA, Tedeschi G, Servi S, Curti B, Carrea G, Di Lorenzo R, Monti D (2003) Cloning and expression in Escherichia coli of the gene encoding Streptomyces PMF PLD, a phospholipase D with high transphosphatidylation activity. Enzyme Microb Technol 33:676–688

    Article  CAS  Google Scholar 

  23. Altschul SF, Madden TL, Schäffer AA, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  24. Pernodet JL, Boccard F, Alegre MT, Gagnat J, Guerineau M (1989) Organization and nucleotide sequence analysis of a ribosomal RNA gene cluster from Streptomyces ambofaciens. Gene 79:33–46

    Article  CAS  PubMed  Google Scholar 

  25. Shirling EB, Gottlieb D (1968) Cooperative description of type cultures of Streptomyces. III. Additional species descriptions from first and second studies. Int J Syst Bacteriol 18:279–392

    Article  Google Scholar 

  26. Shirling EB, Gottlieb D (1969) Cooperative description of type cultures of Streptomyces. IV. Species descriptions from the second, third and fourth studies. Int J Syst Bacteriol 19:391–512

    Article  Google Scholar 

  27. Shirling EB, Gottlieb D (1972) Cooperative description of type strains of Streptomyces. V. Additional descriptions. Int J Syst Bacteriol 22:265–394

    Article  Google Scholar 

  28. Nonomura H (1974) Key for classification and identification of 458 species of the streptomycetes included in ISP. J Ferment Technol 52:78–92

    Google Scholar 

  29. Stackebrandt E, Goebel BM (1994) A place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  30. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  31. Shimbo K, Iwasaki Y, Yamane T, Ina K (1993) Purification and properties of phospholipase D from Streptomyces antibioticus. Biosci Biotechnol Biochem 57:1946–1948

    Article  CAS  Google Scholar 

  32. Shimbo K, Yano H, Miyamoto Y (1989) Two Streptomyces strains that produce phospholipase D with high transphosphatidylation activity. Agric Biol Chem 53:3083–3085

    CAS  Google Scholar 

  33. Carrea G, D’Arrigo P, Piergianni V, Roncaglio S, Secundo F, Servi S (1995) Purification and properties of two phospholipases D from Streptomyces sp. Biochim Biophys Acta 1255:273–279

    PubMed  Google Scholar 

  34. Ogino C, Negi Y, Matsumiya T, Nakaoka K, Kondo A, Kuroda S, Tokuyama S, Kikkawa U, Yamane T, Fukuda H (1999) Purification, characterization, and sequence determination of phospholipase D secreted by Streptoverticillium cinnamoneum. J Biochem 125:263–269

    CAS  PubMed  Google Scholar 

  35. Hatanaka T, Negishi T, Kubota-Akizawa M, Hagishita T (2002) Purification, characterization, cloning and sequencing of phospholipase D from Streptomyces septatus TH-2. Enzyme Microb Technol 31:233–241

    Article  CAS  Google Scholar 

  36. Hagishita T, Nishikawa M, Hatanaka T (2000) Isolation of phospholipase D producing microorganisms with high transphosphatidylation activity. Biotechnol Lett 22:1587–1590

    Article  CAS  Google Scholar 

  37. Juneja LR, Kazuoka T, Yamane T, Shimizu S (1988) Kinetic evaluation of conversion of phosphatidylcholine to phosphatidylethanolamine by phospholipase D from different sources. Biochim Biophys Acta 960:334–341

    CAS  PubMed  Google Scholar 

  38. Juneja LR, Kazuoka T, Goto N, Yamane T, Shimizu S (1989) Conversion of phosphatidylcholine to phosphatidylserine by various phospholipase D in the presence of l- or d-serine. Biochim Biophys Acta 1003:277–283

    CAS  Google Scholar 

  39. Yu CH, Liu SY, Panagia V (1996) The transphosphatidylation activity of phospholipase D. Mol Cell Biochem 157:101–105

    Article  CAS  PubMed  Google Scholar 

  40. Ogino C, Daido H, Ohmura Y, Takada N, Itou Y, Kondo A, Fukuda H, Shimizu N (2007) Remarkable enhancement in PLD activity from Streptoverticillium cinnamoneum by substituting serine residue into the GG/GS motif. Biochim Biophys Acta 1774:671–678

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Toshio Nagashima, Tokyo University of Agriculture for his excellent contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yozo Nakazawa.

Additional information

Nucleotide sequences

The DDBJ/EMBL/GenBank accession numbers for 16S rDNA sequences of strain 9-4, 10-1, 10-2, 10-3, 10-6, and 21-4 are AB222067, AB222068, AB222070, AB222071, AB222069, and AB222072, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakazawa, Y., Suzuki, R., Uchino, M. et al. Identification of Actinomycetes Producing Phospholipase D with High Transphosphatidylation Activity. Curr Microbiol 60, 365–372 (2010). https://doi.org/10.1007/s00284-009-9551-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9551-3

Keywords

Navigation