Skip to main content
Log in

Proteolytic Activity of Pseudomonas aeruginosa Isolates with TTSS-Mediated Cytotoxicity and Invasiveness to Host Cells

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Over 100 of Pseudomonas aeruginosa isolates representing the two TTSS genotypes (exoU /exoS + or exoU +/exoS ) were cultured in different media in order to evaluate their proteolytic activities and find a relationship between proteolytic activity and the cytotoxic and/or invasive phenotypes displayed by the strains upon infection of RAW 264.7 murine macrophage-like cells and pulmonary microvascular endothelial cells (PME). The elastolytic activity, protein concentration, and total proteolytic activity (TPA) were measured in culture supernatants. No significant differences were observed in the median elastolytic activities among cytotoxic/noninvasive, noncytotoxic/invasive, and cytotoxic/invasive phenotypes displayed by P. aeruginosa strains. The only significant difference was noted when isolates of the two different TTSS genotypes were grown in a calcium-depleted minimal medium for induction of TTSS (MI). The exoU /exoS + isolates showed significant higher levels of the median elastolytic activity when compared to the exoU +/exoS isolates. These two groups of isolates secreted the elastase B (LasB) with distinct molecular masses 158 or 116 kD, respectively. The strains of the two TTSS genotypes secreted similar amount of total proteins; however, the higher values of TPA were observed for the isolates of the exoU + /exoS genotype when grown in MI medium. We concluded that there is no direct relationship between secretion of proteases with elastolytic activity and the cytotoxic and/or invasive phenotypes of the isolates observed upon infection of both RAW 264.7 and PME monolayers. Further studies are needed to find out whether others factors beside proteases could influence the mechanism of host cells intoxication mediated by the P. aeruginosa TTSS-delivered toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Atlas RM (1997) Handbook of microbiological media, 2nd edn. CRC Press Inc, Boca Raton, FL

    Google Scholar 

  2. Choy MH, Stapelton F, Wilcox MDP, Zhu H (2008) Comparison of virulence factors in Pseudomonas aeruginosa strains isolated from contact lens- and non-contact lens-related keratitis. J Med Microbiol 57:1539–1546

    Article  PubMed  Google Scholar 

  3. Cowell BA, Twining SS, Hobden JA, Kwong MS, Fleiszig SM (2003) Mutation of lasA and lasB reduces Pseudomonas aeruginosa invasion of epithelial cells. Microbiol 149:2291–2299

    Article  CAS  Google Scholar 

  4. Driscoll JA, Brody SL, Kollew MH (2007) The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67:351–368

    Article  CAS  PubMed  Google Scholar 

  5. Engel J, Balachandran P (2009) Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol 12:61–66

    Article  CAS  PubMed  Google Scholar 

  6. El Solh AA, Akinnusi ME, Wiener-Kronish JP, Lynch SV, Pineda LA, Szarpa K (2008) Persistent infection with Pseudomonas aeruginosa in ventilator-associated pneumonia. Am J Respir Crit Care Med 178:513–519

    Article  PubMed  Google Scholar 

  7. Kida Y, Higashimoto Y, Inoue H, Shimizu T, Kuwano K (2008) A novel secreted protease from Pseudomonas aeruginosa activates NF-kappaB through protease-activated receptors. Cell Microbiol 10:1491–1504

    Article  CAS  PubMed  Google Scholar 

  8. Kim J, Ahn K, Min S, Jia J, Ha U, Wu D, Jin S (2005) Factors triggering type III secretion in Pseudomonas aeruginosa. Microbiology 151:3575–3587

    Article  CAS  PubMed  Google Scholar 

  9. Lomholt JA, Poulsen K, Kilian M (2001) Epidemic population structure of Pseudomonas aeruginosa: evidence for a clone that is pathogenic to the eye and that has a distinct combination of virulence factors. Infect Immun 69:6284–6295

    Article  CAS  PubMed  Google Scholar 

  10. Nicas TI, Gilewski BH (1984) Isolation and characterization of transposon-induced mutants of Pseudomonas aeruginosa deficient in production of exoenzyme S. Infect Immun 45:470–474

    CAS  PubMed  Google Scholar 

  11. Nouwens AS, Willcox MD, Walsh BJ, Cordwell SJ (2002) Proteomic comparison of membrane and extracellular proteins from invasive (PAO1) and cytotoxic (6206) strains of Pseudomonas aeruginosa. Proteomics 2:1325–1346

    Article  CAS  PubMed  Google Scholar 

  12. Ołdak E, Trafny EA (2005) Secretion of proteases by Pseudomonas aeruginosa biofilms exposed to ciprofloxacin. Antimicrob Agents Chemother 49:3281–3288

    Article  PubMed  Google Scholar 

  13. Saliba AM, de Assis MC, Nishi R (2006) Implications of oxidative stress in the cytotoxicity of Pseudomonas aeruginosa ExoU. Microbes Infect 8:450–459

    Article  CAS  PubMed  Google Scholar 

  14. Schmidtchen A, Wolff H, Hansson C (2001) Differential proteinase expression by Pseudomonas aeruginosa derived from chronic leg ulcers. Acta Derm Venereol 81:406–409

    Article  CAS  PubMed  Google Scholar 

  15. Stępińska MA, Trafny EA (2008) Diverse type III secretion phenotypes among Pseudomonas aeruginosa strains upon infection of murine macrophage-like and endothelial cell lines. Microbiol Pathog 44:448–458

    Article  Google Scholar 

  16. Tang A, Marquart ME, Fratkin JD, McCormick CC, Caballero AR, Gatlin HP, O’Callaghan RJ (2009) Properties of PASP: a Pseudomonas protease capable of mediating corneal erosions. Invest. Ophthalmol Vis Sci 50:3794–3801

    Article  PubMed  Google Scholar 

  17. Tingpej P, Smith L, Rose B, Zhu H, Conibear T, Al Nassafi K, Manos J, Elkins M, Bye P, Willcox M, Bell S, Wainwright C, Harbour C (2007) Phenotypic characterization of clonal and nonclonal Pseudomonas aeruginosa strains isolated from lungs of adults with cystic fibrosis. J Clin Microbiol 45:1697–1704

    Article  CAS  PubMed  Google Scholar 

  18. Thibodeaux BA, Caballero AR, Marquart ME, Tommassen J, O’Callaghan RJ (2007) Corneal virulence of Pseudomonas aeruginosa elastase B and alkaline protease produced by Pseudomonas putida. Curr Eye Res 32:373–386

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Takayama H, Matsuba T, Jiang R, Tanaka Y (2003) Induction of apoptosis in macrophage cell line, J774, by the cell-free supernatant from Pseudomonas aeruginosa. Microbiol Immunol 47:199–206

    CAS  PubMed  Google Scholar 

  20. Zhu H, Thuruthyil SJ, Willcox MDP (2000) Invasive strains of Pseudomonas aeruginosa are able to cause epithelial cell cytotoxicity that is dependent on bacterial cell density. Clin Experiment Ophtalmol 28:201–204

    Article  CAS  Google Scholar 

  21. Zhu H, Thuruthyil SJ, Willcox MDP (2002) Determination of quorum-sensing signal molecules and virulence factors of Pseudomonas aeruginosa isolated from contact lens-inducted microbial keratitis. J Med Microbiol 51:1063–1070

    CAS  PubMed  Google Scholar 

  22. Zhu H, Conibear TC, Bandara R, Aliwarga Y, Stapleton F, Willcox MD (2006) Type III secretion system-associated toxins, proteases, serotypes, and antibiotic resistance of Pseudomonas aeruginosa isolates associated with keratitis. Curr Eye Res 31:297–306

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elżbieta A. Trafny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stępińska, M.A., Ołdak, E. & Trafny, E.A. Proteolytic Activity of Pseudomonas aeruginosa Isolates with TTSS-Mediated Cytotoxicity and Invasiveness to Host Cells. Curr Microbiol 60, 360–364 (2010). https://doi.org/10.1007/s00284-009-9550-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9550-4

Keywords

Navigation