Advertisement

Current Microbiology

, Volume 60, Issue 2, pp 134–142 | Cite as

Evaluation of the Expression and Protective Potential of Leptospiral Sphingomyelinases

  • Eneas Carvalho
  • Angela S. Barbosa
  • Ricardo M. Gómez
  • Maria L. S. Oliveira
  • Eliete C. Romero
  • Amane P. Gonçales
  • Zenaide M. Morais
  • Sílvio A. Vasconcellos
  • Paulo L. HoEmail author
Article

Abstract

Leptospirosis is a zoonotic disease of global distribution, which affects both animals and humans. Pathogenic leptospires, the bacteria that cause this disease, require iron for their growth, and these spirochetes probably use their hemolysins, such as the sphingomyelinases, as a way to obtain this important nutrient from host red blood cells during infection. We expressed and purified the leptospiral sphingomyelinases Sph1, Sph2, Sph4, and SphH in a heterologous system. However, the recombinant proteins were not able to lyse sheep erythrocytes, despite having regular secondary structures. Transcripts for all sphingomyelinases tested were detected by RT-PCR analyses, but only Sph2 and SphH native proteins could be detected in Western blot assays using Leptospira whole extracts as well as in renal tubules of infected hamsters. Moreover, antibodies present in the serum of a human patient with laboratory-confirmed leptospirosis recognized Sph2, indicating that this sphingomyelinase is expressed and exposed to the immune system during infection in humans. However, in an animal challenge model, none of the sphingomyelinases tested conferred protection against leptospirosis.

Keywords

Recombinant Protein Hemolytic Activity Leptospirosis Regular Secondary Structure Pathogenic Leptospire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Dr. Albert Leyva for English editing of the manuscript and FAPESP, CNPq, and Fundação Butantan for financial support.

Supplementary material

284_2009_9519_MOESM1_ESM.doc (32 kb)
(DOC 33 kb)

References

  1. 1.
    Artiushin S, Timoney JF, Nally J et al (2004) Host-inducible immunogenic sphingomyelinase-like protein, Lk73.5, of Leptospira interrogans. Infect Immun 72:742–749CrossRefPubMedGoogle Scholar
  2. 2.
    Carvalho E, Barbosa AS, Gomez RM et al (2009) Leptospiral TlyC is an extracellular matrix-binding protein and does not present hemolysin activity. FEBS Lett 583:1381–1385CrossRefPubMedGoogle Scholar
  3. 3.
    del Real G, Segers RP, van der Zeijst BA et al (1989) Cloning of a hemolysin gene from Leptospira interrogans serovar hardjo. Infect Immun 57:2588–2590PubMedGoogle Scholar
  4. 4.
    Faine S (1959) Iron as a growth requirement for pathogenic Leptospira. J Gen Microbiol 20:246–251PubMedGoogle Scholar
  5. 5.
    Faine S, Adler B, Bolin C et al (1999) Leptospira and leptospirosis, 2nd edn. MediSci, Melbourne, AustraliaGoogle Scholar
  6. 6.
    Goni FM, Alonso A (2002) Sphingomyelinases: enzymology and membrane activity. FEBS Lett 531:38–46CrossRefPubMedGoogle Scholar
  7. 7.
    Haake DA, Chao G, Zuerner RL et al (2000) The leptospiral major outer membrane protein LipL32 is a lipoprotein expressed during mammalian infection. Infect Immun 68:2276–2285CrossRefPubMedGoogle Scholar
  8. 8.
    Hauk P, Macedo F, Romero EC et al (2008) In LipL32, the major leptospiral lipoprotein, the C terminus is the primary immunogenic domain and mediates interaction with collagen IV and plasma fibronectin. Infect Immun 76:2642–2650CrossRefPubMedGoogle Scholar
  9. 9.
    Koizumi N, Watanabe H (2005) Leptospirosis vaccines: past, present, and future. J Postgrad Med 51:210–214PubMedGoogle Scholar
  10. 10.
    Kojima T, Yanagihara Y, Mifuchi I (1984) Characterization of inhibitor to leptospiral hemolysin present in bovine serum. Microbiol Immunol 28:291–302PubMedGoogle Scholar
  11. 11.
    Lee SH, Kim KA, Park YG et al (2000) Identification and partial characterization of a novel hemolysin from Leptospira interrogans serovar lai. Gene 254:19–28CrossRefPubMedGoogle Scholar
  12. 12.
    Lee SH, Kim S, Park SC et al (2002) Cytotoxic activities of Leptospira interrogans hemolysin SphH as a pore-forming protein on mammalian cells. Infect Immun 70:315–322CrossRefPubMedGoogle Scholar
  13. 13.
    Levett PN (2001) Leptospirosis. Clin Microbiol Rev 14:296–326CrossRefPubMedGoogle Scholar
  14. 14.
    Louvel H, Saint Girons I, Picardeau M (2005) Isolation and characterization of FecA- and FeoB-mediated iron acquisition systems of the spirochete Leptospira biflexa by random insertional mutagenesis. J Bacteriol 187:3249–3254CrossRefPubMedGoogle Scholar
  15. 15.
    Louvel H, Bommezzadri S, Zidane N et al (2006) Comparative and functional genomic analyses of iron transport and regulation in Leptospira spp. J Bacteriol 188:7893–7904CrossRefPubMedGoogle Scholar
  16. 16.
    Matsunaga J, Medeiros MA, Sanchez Y et al (2007) Osmotic regulation of expression of two extracellular matrix-binding proteins and a haemolysin of Leptospira interrogans: differential effects on LigA and Sph2 extracellular release. Microbiology 153:3390–3398CrossRefPubMedGoogle Scholar
  17. 17.
    McBride AJ, Athanazio DA, Reis MG et al (2005) Leptospirosis. Curr Opin Infect Dis 18:376–386CrossRefPubMedGoogle Scholar
  18. 18.
    Nascimento AL, Ko AI, Martins EA et al (2004) Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 186:2164–2172CrossRefPubMedGoogle Scholar
  19. 19.
    Palaniappan RU, McDonough SP, Divers TJ et al (2006) Immunoprotection of recombinant leptospiral immunoglobulin-like protein A against Leptospira interrogans serovar Pomona infection. Infect Immun 74:1745–1750CrossRefPubMedGoogle Scholar
  20. 20.
    Picardeau MD, Bulach DM, Bouchier C et al (2008) Genome sequence of the saprophyte Leptospira biflexa provides insights into the evolution of Leptospira and the pathogenesis of leptospirosis. PLoS ONE 3:e1607CrossRefPubMedGoogle Scholar
  21. 21.
    Plank R, Dean D (2000) Overview of the epidemiology, microbiology, and pathogenesis of Leptospira spp. in humans. Microbes Infect 2:1265–1276CrossRefPubMedGoogle Scholar
  22. 22.
    Ramos CR, Figueredo RC, Pertinhez TA et al (2003) Gene structure and M20T polymorphism of the Schistosoma mansoni Sm14 fatty acid-binding protein. Molecular, functional, and immunoprotection analysis. J Biol Chem 278:12745–12751CrossRefPubMedGoogle Scholar
  23. 23.
    Ramos CR, Abreu PA, Nascimento AL et al (2004) A high-copy T7 Escherichia coli expression vector for the production of recombinant proteins with a minimal N-terminal His-tagged fusion peptide. Braz J Med Biol Res 37:1103–1109CrossRefPubMedGoogle Scholar
  24. 24.
    Ren SX, Fu G, Jiang XG et al (2003) Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature 422:888–893CrossRefPubMedGoogle Scholar
  25. 25.
    Sambrook J, Russell RW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  26. 26.
    Segers RP, van der Drift A, de Nijs A et al (1990) Molecular analysis of a sphingomyelinase C gene from Leptospira interrogans serovar hardjo. Infect Immun 58:2177–2185PubMedGoogle Scholar
  27. 27.
    Segers RP, van Gestel JA, van Eys GJ et al (1992) Presence of putative sphingomyelinase genes among members of the family Leptospiraceae. Infect Immun 60:1707–1710PubMedGoogle Scholar
  28. 28.
    Thompson JC, Manktelow BW (1986) Pathogenesis and red blood cell destruction in haemoglobinaemic leptospirosis. J Comp Pathol 96:529–540CrossRefPubMedGoogle Scholar
  29. 29.
    Thompson JC, Marshall RB (1986) In vitro studies of haemolysis by Leptospira interrogans serovars pomona and ballum. Vet Microbiol 11:285–292CrossRefPubMedGoogle Scholar
  30. 30.
    Vinetz JM (2001) Leptospirosis. Curr Opin Infect Dis 14:527–538PubMedGoogle Scholar
  31. 31.
    Wang Z, Jin L, Wegrzyn A (2007) Leptospirosis vaccines. Microb Cell Fact 6:39CrossRefPubMedGoogle Scholar
  32. 32.
    Yanagihara Y, Kojima T, Mifuchi I (1982) Hemolytic activity of Leptospira interrogans serovar canicola cultured in protein-free medium. Microbiol Immunol 26:547–556PubMedGoogle Scholar
  33. 33.
    Zhang YX, Geng Y, Bi B et al (2005) Identification and classification of all potential hemolysin encoding genes and their products from Leptospira interrogans serogroup Icterohae-morrhagiae serovar lai. Acta Pharmacol Sin 26:453–461CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang YX, Geng Y, Yang JW et al (2008) Cytotoxic activity and probable apoptotic effect of Sph2, a sphigomyelinase hemolysin from Leptospira interrogans strain Lai. BMB Rep 41:119–125PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Eneas Carvalho
    • 1
    • 2
    • 3
  • Angela S. Barbosa
    • 4
  • Ricardo M. Gómez
    • 5
  • Maria L. S. Oliveira
    • 1
  • Eliete C. Romero
    • 6
  • Amane P. Gonçales
    • 7
  • Zenaide M. Morais
    • 7
  • Sílvio A. Vasconcellos
    • 7
  • Paulo L. Ho
    • 1
    • 2
    Email author
  1. 1.Centro de Biotecnologia, Instituto ButantanSão PauloBrazil
  2. 2.Departamento de Genética e Biologia Evolutiva, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  3. 3.Laboratório de ParasitologiaInstituto ButantanSão PauloBrazil
  4. 4.Laboratório de BacteriologiaInstituto ButantanSão PauloBrazil
  5. 5.Instituto de Biotecnología y Biología MolecularUniversidad Nacional de La Plata, Centro Científico Tecnológico CONICETLa PlataArgentina
  6. 6.Seção de Bacteriologia, Instituto Adolfo LutzSão PauloBrazil
  7. 7.Faculdade de Medicina Veterinária e ZootecniaUniversidade de São PauloSão PauloBrazil

Personalised recommendations