Skip to main content
Log in

Detection of Fiber-Digesting Bacteria in the Ceca of Ostrich Using Specific Primer Sets

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to detect three fibrolytic bacteria, Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminococcus albus, in the cecal digesta of the ostrich (Struthio camelus) by PCR using a species-specific primer set for each 16S ribosomal RNA gene (16S rDNA). Although amplified DNA fragments obtained from each primer set had the expected size, the clone library derived from the amplimer contained non-specific sequences. The F. succinogenes-specific primer set recovered a partial 16S rDNA sequence of an uncultivated Fibrobacter with low similarity (<95%) and distantly related phylogenetic positioning to Fibrobacter sequences deposited in the databases, indicating a novel species of Fibrobacter. The sequence was considered to be identical to a clone detected in our previous experiment. Thus, we confirm that the gastrointestinal tract of the ostrich is one of the habitats of Fibrobacter species. The clone library derived from the R. flavefaciens-specific primer set contained a 16S rDNA sequence with 97% similarity to R. flavefaciens, indicating it could be one of a major fibrolytic bacterium in the ostrich ceca. No R. albus 16S rDNA sequence was found in the clone library of the R. albus-specific primer set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  2. Bennegadi N, Fonty G, Millet L et al (2003) Effects of age and dietary fibre level on caecal microbial communities of conventional and specific pathogen-free rabbits. Microb Ecol Health D 15:23–32

    Article  Google Scholar 

  3. Frey JC, Rothman JM, Pell AN, Nizeyi JB, Cranfield MR, Angert ER (2006) Fecal bacterial diversity in a wild gorilla. Appl Environ Microbiol 72:3788–3792

    Article  CAS  PubMed  Google Scholar 

  4. Fukatsu T (1999) Acetone preservation: a practical technique for molecular analysis. Mol Ecol 8:1935–1945

    Article  CAS  PubMed  Google Scholar 

  5. Godon J, Zumstein E, Dabert D et al (1997) Molecular microbial diversity of an anaerobic digester as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63:2802–2813

    CAS  PubMed  Google Scholar 

  6. Hattori K, Matsui H (2008) Diversity of fumarate reducing bacteria in the bovine rumen revealed by culture dependent and independent approaches. Anaerobe 14:87–93

    Article  CAS  PubMed  Google Scholar 

  7. Koike S, Kobayashi Y (2001) Development and use of competitive PCR assays for the ruminal cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol Lett 204:361–366

    Article  CAS  PubMed  Google Scholar 

  8. Koike S, Shingu Y, Inaba H et al (2000) Fecal bacteria in Hokkaido native horses as characterized by microscopic enumeration and competitive polymerase chain reaction assays. J Equine Sci 11:45–50

    Article  Google Scholar 

  9. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  10. Lin C, Stahl DA (1995) Taxon-specific probes for the cellulolytic genus Fibrobacter reveal abundant and novel equine-associated populations. Appl Environ Microbiol 61:1348–1351

    CAS  PubMed  Google Scholar 

  11. Matsui H, Kato Y, Chikaraishi T, Moritani M, Ban-Tokuda T, Wakita M (2009) Microbial diversity in ostrich ceca as revealed by 16S ribosomal RNA gene clone library and detection of novel Fibrobacter species. Anaerobe (in press)

  12. McDonald JE, Lockhart RJ, Cox MJ, Allison HE, McCarthy AJ (2008) Detection of novel Fibrobacter populations in landfill sites and determination of their relative abundance via quantitative PCR. Environ Microbiol 10:1310–1319

    Article  CAS  PubMed  Google Scholar 

  13. Montgomery L, Macy JM (1982) Characterization of rat cecum cellulolytic bacteria. Appl Environ Microbiol 44:1435–1443

    CAS  PubMed  Google Scholar 

  14. Montgomery L, Flesher B, Stahl D (1988) Transfer of Bacteroides succinogenes (Hungate) to Fibrobacter gen nov. as Fibrobacter succinogenes comb. nov. and description of Fibrobacter intestinalis sp. nov. Int J Syst Bacteriol 38:430–435

    Article  Google Scholar 

  15. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  16. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  CAS  PubMed  Google Scholar 

  17. Swart D, Mackie RI, Hayes JP (1993) Influence of live mass, rate of passage and fibre digestion in the ostrich (Struthio camelus var. domesticus). S Afr J Anim Sci 23:119–126

    Google Scholar 

  18. Swart D, Mackie RI, Hayes JP (1993) Fermentative digestion in the ostrich (Struthio camelus var. domesticus), a large avian species that utilizes cellulose. S Afr J Anim Sci 23:127–135

    Google Scholar 

  19. Tajima K, Aminov RI, Nagamine T et al (2001) Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl Environ Microbiol 67:2766–2774

    Article  CAS  PubMed  Google Scholar 

  20. van Gylswyk KO, Russouw T, James MD et al (1998) Bacterial cellulose degradation in the ostrich digestive tract. In: Ohmiya K, Hayashi K, Sakka K, Kobayashi Y, Karita S, Kimura T (eds) Genetics, biochemistry and ecology of cellulose degradation. Uni Publishers, Co. Ltd., Tokyo, Japan, pp 602–610

    Google Scholar 

  21. Varel VH, Fryda SJ, Robinson IM (1984) Cellulolytic bacteria from pig large intestine. Appl Environ Microbiol 47:219–221

    CAS  PubMed  Google Scholar 

  22. Yamano H, Koike S, Kobayashi Y, Hata H (2008) Phylogenetic analysis of hindgut microbiota in Hokkaido native horses compared to light horses. Anim Sci J 79:234–242

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Kazunari Ushida and his colleagues (Kyoto Prefectural University, Kyoto, Japan) for their instruction of DNA extraction. The present study was financially supported by Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science (17380157). Nucleotide sequencing was carried out at Life Science Research Center (Center for Molecular Biology and Genetics, Mie University (Tsu, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Matsui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsui, H., Ban-Tokuda, T. & Wakita, M. Detection of Fiber-Digesting Bacteria in the Ceca of Ostrich Using Specific Primer Sets. Curr Microbiol 60, 112–116 (2010). https://doi.org/10.1007/s00284-009-9513-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9513-9

Keywords

Navigation