Skip to main content
Log in

Viability of Rhodococcus equi and Parascaris equorum Eggs Exposed to High Temperatures

Current Microbiology Aims and scope Submit manuscript

Cite this article

Abstract

There is great concern about the potential pathogen contamination of horse manure compost spread in the same fields horses graze in. To ensure that pathogen destruction occurs, temperatures need to be sufficiently high during composting. Here, we investigated the survival rate of two marker organisms, Rhodococcus equi and Parascaris equorum eggs, exposed to temperatures potentially encountered during horse manure composting. Our results show that the time required to achieve a 1 log10 reduction in R. equi population (D-value) are 17.1 h (±1.47) at 45°C, 8.6 h (±0.28) at 50°C, 2.9 h (±0.04) at 55°C and 0.7 h (±0.04) at 60°C. For P. equorum eggs we show that at 45 and 50°C, 2 log10 reduction of viability is reached between 8 and 24 h of incubation and that it takes less than 2 h at 55 and 60°C to achieve a viability reduction of 2 log10. These results are useful for identifying composting conditions that will reduce the risk of environmental contamination by R. equi and P. equorum eggs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Augustin JC, Carlier V, Rozier J (1998) Mathematical modelling of the heat resistance of Listeria monocytogenes. J Appl Microbiol 84:185–191

    Article  CAS  PubMed  Google Scholar 

  2. Barton MD, Hughes KL (1984) Ecology of Rhodococcus equi. Vet Microbiol 9:65–76

    Article  CAS  PubMed  Google Scholar 

  3. Boyle AG, Houston R (2006) Parasitic pneumonitis and treatment in horses. Clin Tech Eq Pract 5:225–232

    Article  Google Scholar 

  4. Clayton HM (1986) Ascarids recent advances. Vet Clin North Am Eq Pract 2:313–328

    CAS  Google Scholar 

  5. Clayton HM, Duncan JL (1979) The migration and development of Parascaris equorum in the horse. Int J Parasitol 9:285–292

    Article  CAS  PubMed  Google Scholar 

  6. Doyle ME, Mazzotta AS (2000) Review of studies on the thermal resistance of salmonellae. J Food Prot 63:779–795

    CAS  PubMed  Google Scholar 

  7. EPA US (2003) Control of pathogens and vector attraction in sewage sludge. EPA/625/R-92/013, pp 173–177

  8. Grewal SK, Rajeev S, Sreevatsan S, Michel FC Jr (2006) Persistence of Mycobacterium avium subsp. paratuberculosis and other zoonotic pathogens during simulated composting, manure packing, and liquid storage of dairy manure. Appl Environ Microbiol 72:565–574

    Article  CAS  PubMed  Google Scholar 

  9. Hondalus MK (1997) Pathogenesis and virulence of Rhodococcus equi. Vet Microbiol 56:257–268

    Article  CAS  PubMed  Google Scholar 

  10. Hughes KL, Sulaiman I (1987) The ecology of Rhodococcus equi and physicochemical influences on growth. Vet Microbiol 14:241–250

    Article  CAS  PubMed  Google Scholar 

  11. Jenkins MB, Walker MJ, Bowman DD, Anthony LC, Ghiorse WC (1999) Use of a sentinel system for field measurements of Cryptosporidium parvum oocyst inactivation in soil and animal waste. Appl Environ Microbiol 65:1998–2005

    CAS  PubMed  Google Scholar 

  12. Jones DL (1999) Potential health risks associated with the persistence of Escherichia coli O157 in agricultural environments. Soil Use Manag 15:76–83

    Article  Google Scholar 

  13. Koudela B, Bodeček Š (2006) Effects of low and high temperatures on viability of Parascaris equorum eggs suspended in water. Vet Parasitol 142:123–128

    Article  CAS  PubMed  Google Scholar 

  14. Lee AS, Dyer JR (2004) Severe Streptococcus zooepidemicus infection in a gardener. Med J Aust 180:366

    PubMed  Google Scholar 

  15. Lindgren K, Ljungvall Ö, Nilsson O, Ljungström BL, Lindahl C, Höglund J (2008) Parascaris equorum in foals and in their environment on a Swedish stud farm, with notes on treatment failure of ivermectin. Vet Parasitol 151:337–343

    Article  CAS  PubMed  Google Scholar 

  16. Mafart P (2000) Taking injuries of surviving bacteria into account for optimising heat treatments. Int J Food Microbiol 55:175–179

    Article  CAS  PubMed  Google Scholar 

  17. Muscatello G, Leadon DP, Klayt M, Ocampo-Sosa A, Lewis DA, Fogarty U, Buckley T, Gilkerson JR, Meijer WG, Vazquez-Boland JA (2007) Rhodococcus equi infection in foals: the science of ‘rattles’. Eq Vet J 39:470–478

    Article  CAS  Google Scholar 

  18. Takai S, Sasaki Y, Tsubaki S (1995) Rhodococcus equi infection in foals—current concepts and implication for future research. J Eq Sci 6:105–119

    Article  Google Scholar 

  19. Turner C (2002) The thermal inactivation of E. coli in straw and pig manure. Bioresource Technol 84:57–61

    CAS  Google Scholar 

Download references

Acknowledgments

L. Hébert was founded by a grand awarded by the Fonds EPERON (FNCF Paris, France). We are very grateful to the Unit observatoire anatomo-pathologique et epidémiologique des maladies équines majeures ou émergente (AFSSA Dozulé, France) for providing adult P. equorum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Hébert.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hébert, L., Cauchard, J., Doligez, P. et al. Viability of Rhodococcus equi and Parascaris equorum Eggs Exposed to High Temperatures. Curr Microbiol 60, 38–41 (2010). https://doi.org/10.1007/s00284-009-9497-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9497-5

Keywords

Navigation