Skip to main content

Advertisement

Log in

Cys92, Cys101, Cys197, and Cys203 Are Crucial Residues for Coordinating the Iron–Sulfur Cluster of RhdA from Acidithiobacillus ferrooxidans

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

By proteomic analysis, we found a rhodanese-like protein(RhdA) from Acidithiobacillus ferrooxidans ATCC 23270 whose C-terminal contained a cysteine motif (Cys-XX-Trp-XX-Cys), known to bind iron–sulfur clusters. But so far, there were no articles to confirm the existence of iron–sulfur cluster in RhdA. In this study, RhdA gene from A. ferrooxidans ATCC 23270 was cloned and expressed in Escherichia coli, the protein was purified by one-step affinity chromatography to homogeneity. The UV–Vis scanning and EPR spectra results indicated that the wild-type proteins contained an iron–sulfur cluster. Site-directed mutagenesis results revealed that the four cysteines Cys92, Cys101, Cys197, and Cys203 were crucial residues for iron–sulfur cluster binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Acosta M, Beard S, Ponce J, Vera M, Mobarec JC, Jerez CA (2005) Identification of putative sulfurtransferase genes in the extremophilic Acidithiobacillus ferrooxidans ATCC 23270 genome: structural and functional characterization of the proteins. OMICS J Integr Biol 9:13–29

    Article  CAS  Google Scholar 

  2. Agar JN, Krebs C, Frazzon J, Huynh BH, Dean DR, Johnson MK (2000) IscU as a scaffold for iron–sulfur cluster biosynthesis: sequential assembly of [2Fe–2S] and [4Fe–4S] clusters in IscU. Biochemistry 39:7856–7862

    Article  PubMed  CAS  Google Scholar 

  3. Beinert H, Holm RH, Munck E (1997) Iron–sulfur clusters: nature’s modular, multipurpose structures. Science 277:653–659

    Article  PubMed  CAS  Google Scholar 

  4. Berks BC, Ferguson SJ, Moir JWB, Richardson DJ (1995) Enzymes and associated electron transport systems that catalyze the respiratory reduction of nitrogen oxides and oxyanions. Biochim Biophys Acta 1232:97–173

    Article  PubMed  Google Scholar 

  5. Bian S, Cowan JA (1999) Protein-bound iron–sulfur centers. Form, function, and assembly. Coord Chem Rev 190:1049–1066

    Article  Google Scholar 

  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  7. Colnaghi R, Pagani S, Kennedy C, Drummond M (1996) Cloning, sequence analysis and overexpression of the rhodanese gene of Azotobacter vinelandii. FEBS Eur J Biochem 236:240–248

    Article  CAS  Google Scholar 

  8. Cupp-Vickery JR, Silberg JJ, Ta DT, Vickery LE (2004) Crystal structure of IscA, an iron–sulfur cluster assembly protein from Escherichia coli. J Mol Biol 338:127–137

    Article  PubMed  CAS  Google Scholar 

  9. Davidson E, Ohnishi T, Atta-Asafo-Adjei E, Daldal F (1992) Potential ligands to the [2Fe–2S] Rieske cluster of the cytochrome bc1 complex of Rhodobacter capsulatus probed by site-directed mutagenesis. Biochemistry 31:3342–3351

    Article  PubMed  CAS  Google Scholar 

  10. Fauman EB, Cogswell JP, Lovejoy B (1998) Crystal structure of the catalytic domain of the human cell cycle control phosphatase, Cdc25A. Cell 93:617–625

    Article  PubMed  CAS  Google Scholar 

  11. Friedrich CG (1998) Physiology and genetics of sulfur-oxidizing bacteria. Adv Microb Physiol 39:235–289

    Article  PubMed  CAS  Google Scholar 

  12. Fukumori Y, Yano T, Sato A, Yamanaka T (1988) Fe(II)-oxidizing enzyme purified from Thiobacillus ferrooxidans. FEMS Microbiol Lett 50:169–172

    Article  CAS  Google Scholar 

  13. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron–sulfur clusters. Annu Rev Biochem 74:247–281

    Article  PubMed  CAS  Google Scholar 

  14. Kakuta Y, Horio T, Takahashi Y, Fukuyama K (2001) Crystal structure of Escherichia coli Fdx, an adrenodoxin-type ferredoxin involved in the assembly of iron–sulfur clusters. Biochemistry 40:11007–11012

    Article  PubMed  CAS  Google Scholar 

  15. Kerfeld CA, Salmeen AE, Yeates TO (1998) Crystal structure and possible dimerization of the high-potential iron–sulfur protein from Chromatium purpuratum. Biochemistry 37:13911–13917

    Article  PubMed  CAS  Google Scholar 

  16. Krepinsky K, LeimkÜhler S (2007) Site-directed mutagenesis of the active site loop of the rhodanese-like domain of the human molybdopterin synthase sulfurase MOCS3. FEBS J 274:2778–2787

    Article  PubMed  CAS  Google Scholar 

  17. Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  18. Nogi T, Fathir I, Kobayashi M, Nozawa T, Miki K (2000) Crystal structures of photosynthetic reaction center and high-potential iron–sulfur protein from Thermochromatium tepidum: thermostability and electron transfer. Proc Natl Acad Sci USA 97:13561–13566

    Article  PubMed  CAS  Google Scholar 

  19. Ramĺrez P, Toledo H, Guiliani N, Jerez CA (2002) An exported rhodanese-like protein is induced during growth of Acidithiobacillus ferrooxidans in metal sulfides and different sulfur compounds. Appl Environ Microbiol 68:1837–1845

    Article  CAS  Google Scholar 

  20. Rees DC, Howard JB (2003) The interface between the biological and inorganic worlds: iron–sulfur metalloclusters. Science 300:929–931

    Article  PubMed  CAS  Google Scholar 

  21. Rogers A, Ding H (2001) l-Cysteine-mediated destabilization of dinitrosyl iron complexes in proteins. J Biol Chem 276:30980–30986

    Article  PubMed  CAS  Google Scholar 

  22. Smíd O, Horáková E, Vilímová V, Hrdý I, Cammack R, Horváth A, Lukeš J, Tachezy J (2006) Knock-downs of iron–sulfur cluster assembly proteins IscS and IscU down-regulate the active mitochondrion of procyclic Trypanosoma Brucei. JBC 281:28679–28686 (in press)

    Google Scholar 

  23. Sodeoka M, Larson C, Chen L, Land W, Verdine G (1993) A multifunctional plasmid for protein expression by ECPCR: overproduction of the p50 subunit of NF-KB. Bioorg Med Chem Lett 3:1095–1100

    Article  CAS  Google Scholar 

  24. Watanabe S, Kita A, Kobayashi K, Miki K (2008) Crystal structure of the [2Fe–2S] oxidative-stress sensor SoxR bound to DNA. Proc Natl Acad Sci USA 105:4121–4126

    Article  PubMed  CAS  Google Scholar 

  25. Yang J, Bitoun JP, Ding J (2006) Interplay of IscA and IscU in biogenesis of iron–sulfur cluster. J Biol Chem 281:27956–27963

    Article  PubMed  CAS  Google Scholar 

  26. Zeng J, Geng M, Liu Y, Zhao W, Xia L, Liu J, Oiu G (2006) Expression, purification and molecular modelling of the Iro protein from Acidithiobacillus ferrooxidans Fe-1. Protein Expr Purif 52:146–152

    Article  PubMed  CAS  Google Scholar 

  27. Zeng J, Geng M, Jiang H, Liu J, Qiu G (2007) The IscA from Acidithiobacillus ferrooxidans is an iron–sulfur protein which assemble the [Fe4S4] cluster with intracellular iron and sulfur. Arch Biochem Biophys 463:237–244

    Article  PubMed  CAS  Google Scholar 

  28. Zeng J, Zhang X, Wang Y, Ai C, Liu Q, Qiu G (2008) Glu43 is an essential residue for coordinating the [Fe2S2] cluster of IscR from Acidithiobacillus ferrooxidans. FEBS Lett 582:3889–3892

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of P.R. China (2004CB619204), National Natural Science Foundation of P.R.China (50621063, 50874032) and Foundation for the Author of National Excellent Doctoral Dissertation of P.R. China (200549).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianshe Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, Y., Liu, J., Zheng, C. et al. Cys92, Cys101, Cys197, and Cys203 Are Crucial Residues for Coordinating the Iron–Sulfur Cluster of RhdA from Acidithiobacillus ferrooxidans . Curr Microbiol 59, 559–564 (2009). https://doi.org/10.1007/s00284-009-9476-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9476-x

Keywords

Navigation