Current Microbiology

, Volume 59, Issue 5, pp 537–547 | Cite as

Bacterial Diversity and Bioprospecting for Cold-Active Lipases, Amylases and Proteases, from Culturable Bacteria of Kongsfjorden and Ny-Ålesund, Svalbard, Arctic

  • T. N. R. Srinivas
  • S. S. S. Nageswara Rao
  • P. Vishnu Vardhan Reddy
  • M. S. Pratibha
  • B. Sailaja
  • B. Kavya
  • K. Hara Kishore
  • Z. Begum
  • S. M. Singh
  • S. ShivajiEmail author


Culturable bacterial diversity of seven marine sediment samples of Kongsfjorden and a sediment and a soil sample from Ny-Ålesund, Svalbard, Arctic was studied. The bacterial abundance in the marine sediments of Kongsfjorden varied marginally (0.5 × 103–1.3 × 104 cfu/g sediment) and the bacterial number in the two samples collected from the shore of Ny-Ålesund also was very similar (0.6 × 104 and 3.4 × 104, respectively). From the nine samples a total of 103 bacterial isolates were obtained and these isolates could be grouped in to 47 phylotypes based on the 16S rRNA gene sequence belonging to 4 phyla namely Actinobacteria, Bacilli, Bacteroidetes and Proteobacteria. Representatives of the 47 phylotypes varied in their growth temperature range (4–37°C), in their tolerance to NaCl (0.3–2 M NaCl) and growth pH range (2–11). Representatives of 26 phylotypes exhibited amylase and lipase activity either at 5 or 20°C or at both the temperatures. A few of the representatives exhibited amylase and/or lipase activity only at 5°C. None of the phylotypes exhibited protease activity. Most of the phylotypes (38) were pigmented. Fatty acid profile studies indicated that short chain fatty acids, unsaturated fatty acids, branched fatty acids, the cyclic and the cis fatty acids are predominant in the psychrophilic bacteria.


Amylase Lipase Activity Proteobacteria Bacterial Diversity Short Chain Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank the Department of Biotechnology and Council of Scientific and Industrial Research, Government of India for financial support to SS. SS would also like to thank NCAOR and Ministry of Earth Sciences, Government of India, for providing the financial and logistic support for the trip to Arctic.

Supplementary material

284_2009_9473_MOESM1_ESM.xls (36 kb)
(XLS 35 kb)
284_2009_9473_MOESM2_ESM.xls (20 kb)
(XLS 19 kb)
284_2009_9473_MOESM3_ESM.xls (25 kb)
(XLS 25 kb)
284_2009_9473_MOESM4_ESM.xls (46 kb)
(XLS 46 kb)


  1. 1.
    Al Khudary R, Stösser NI, Qoura F et al (2008) Pseudoalteromonas arctica sp. nov., an aerobic, psychrotolerant, marine bacterium isolated from Spitzbergen. Int J Syst Evol Microbiol 58:2018–2024PubMedCrossRefGoogle Scholar
  2. 2.
    Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. Mol Biol 215:403–410Google Scholar
  3. 3.
    Amato P, Hennebelle R, Magand O et al (2007) Bacterial characterization of the snow cover at Sptizberg, Svalbard. FEMS Microbiol Ecol 59:255–264PubMedCrossRefGoogle Scholar
  4. 4.
    Anil Kumar P, Srinivas TNR, Madhu S et al (2009) Indibacter alkaliphilus gen. nov., sp. nov., a novel alkaliphilic bacterium isolated from haloalkaline Lonar Lake, India. Int J Syst Evol Microbiol (in press)Google Scholar
  5. 5.
    Blackburn TH, Hall POJ, Hulth S et al (1996) Organic-N loss by efflux and burial associated with a low efflux of inorganic N and with nitrate assimilation in Arctic sediments, Svalbard (Norway). Mar Ecol Prog Ser 141:283–293CrossRefGoogle Scholar
  6. 6.
    Booth C (1978) In: Booth C (ed) Introduction to general methods. Methods in Microbiology. Academic Press, New York, pp 57–91Google Scholar
  7. 7.
    Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol (Noisy-le-grand) 50:631–642Google Scholar
  8. 8.
    Elverhøi A, Liestøl O, Nagy J (1980) Glacial erosion, sedimentation and microfauna in the inner part of Kongsfjorden, Spitsbergen. Norsk Polarinstitutt Skrifter 172:33–60Google Scholar
  9. 9.
    Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208PubMedCrossRefGoogle Scholar
  10. 10.
    Fong NJ, Burgess ML, Barrow KD et al (2001) Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl Microbiol Biotechnol 56:750–756PubMedCrossRefGoogle Scholar
  11. 11.
    Good IJ (1954) The population frequencies of species and the estimation of population parameters. Biometrica 40:237–264Google Scholar
  12. 12.
    Hao MV, Komagata K (1985) A new species of Planococcus, P. kocurii isolated from fish, frozen foods, and fish curing brine. J Gen Appl Microbiol 31:441–455CrossRefGoogle Scholar
  13. 13.
    Hop H, Borgá K, Gabrielsen GW et al (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Research 21:167–208CrossRefGoogle Scholar
  14. 14.
    Jagannadham MV, Rao VJ, Shivaji S (1991) The major carotenoid pigment of a psychrotrophic Micrococcus roseus strain: purification, structure, and interaction with synthetic membranes. J Bacteriol 173:7911–7917PubMedGoogle Scholar
  15. 15.
    Jagannadham MV, Chattopadhyay MK, Shivaji S (1996) The major carotenoid pigment of a psychrotrophic Micrococcus roseus strain: fluorescence properties of the pigment and its binding to membranes. Biochem Biophys Res Commun 1996(220):724–728CrossRefGoogle Scholar
  16. 16.
    Jankowska K, Wlodarska-Kowalczuk M, Wieczorek P (2005) Abundance and biomass of bacteria in two Arctic glacial fjords. Pol Polar Res/Pol Badania Polarne 26:77–84Google Scholar
  17. 17.
    Jorgensen LL, Gulliksen B (2001) Rocky bottom fauna in arctic Kongsfjord (Svalbard) studied by means of suction sampling and photography. Polar Biol 24:113–121CrossRefGoogle Scholar
  18. 18.
    Knoblauch C, Jørgensen BB, Harder J (1999) Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments. Appl Environ Microbiol 65:4230–4233PubMedGoogle Scholar
  19. 19.
    Kostka JE, Thamdrup B, Glud RN, Canfield DE (1999) Rates and pathways of carbon oxidation in permanently cold Arctic sediments. Mar Ecol Prog Ser 180:7–21CrossRefGoogle Scholar
  20. 20.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Good Fellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175Google Scholar
  21. 21.
    Lefauconnier B, Hagen JO, Rudant JP (1994) Flow speed and calving rate of Kongsbreen glacier, Svalbard, using SPOT images. Pol Res 10:56–65Google Scholar
  22. 22.
    Magurran AE (1996) Ecological diversity and its measurement. Chapman and Hall, London, pp 274–286Google Scholar
  23. 23.
    Mueller DR, Vincent WF, Bonilla S et al (2005) Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiol Ecol 53:73–87PubMedCrossRefGoogle Scholar
  24. 24.
    Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568PubMedCrossRefGoogle Scholar
  25. 25.
    Priest FG (1977) Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev 41:711–753PubMedGoogle Scholar
  26. 26.
    Sahm K, Berninger U (1998) Abundance, vertical distribution, and community structure of benthic prokaryotes from permanently cold marine sediments (Svalbard, Arctic Ocean). Mar Ecol Progr Ser 165:71–80CrossRefGoogle Scholar
  27. 27.
    Sahm K, Knoblauch C, Amann R (1999) Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine Arctic sediments. Appl Environ Microbiol 65:3976–3981PubMedGoogle Scholar
  28. 28.
    Shivaji S, Gupta P, Chaturvedi P, Suresh K, Delille D (2005) Marinobacter maritimus sp. nov., a psychrotolerant strain isolated from sea water off the subantarctic Kerguelen islands. Int J Syst Evol Microbiol 55:1453–1456PubMedCrossRefGoogle Scholar
  29. 29.
    Shivaji S, Chaturvedi P, Suresh K et al (2006) Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. Int J Syst Evol Microbiol 56:1465–1473PubMedCrossRefGoogle Scholar
  30. 30.
    Shivaji S, Bhadra B, Rao RS et al (2007) Microbacterium indicum sp. nov., isolated from a deep-sea sediment sample from the Chagos Trench, Indian Ocean. Int J Syst Evol Microbiol 57:1819–1822PubMedCrossRefGoogle Scholar
  31. 31.
    Shivaji S, Kiran MD, Chintalapati S (2007) Perception and transduction of low temperature in bacteria. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. Washington, DC, ASM Press, pp 194–207Google Scholar
  32. 32.
    Svendsen H, Beszczuńska-Moller A, Hagen JO et al (2002) Physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166CrossRefGoogle Scholar
  33. 33.
    Thompson JD, Higgins DG, Gibson TJ et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  34. 34.
    Väätänen P (1977) Effects of composition of substrate and inoculation technique on plate counts of bacteria in the Northern Baltic Sea. J Appl Bacteriol 42:431–443Google Scholar
  35. 35.
    Van Trappen S, Vandecandelaere I, Mergaert J, Swings J (2004) Flavobacterium degerlachei sp. nov., Flavobacterium frigoris sp. nov. and Flavobacterium micromati sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54:85–92PubMedCrossRefGoogle Scholar
  36. 36.
    Weiner RM, Segall AM, Colwell RR (1985) Characterization of marine bacteria associated with Crassostrea virginica (Eastern oyster). Appl Environ Microbiol 49:83–90PubMedGoogle Scholar
  37. 37.
    Wessels H, Hagen W, Molis M, Wiencke C, Karsten U (2006) Intra- and interspecific differences in palatability of Arctic macroalgae from Kongsfjorden (Spitsbergen) for two benthic sympatric invertebrates. J Exp Mar Biol Ecol 329:20–33CrossRefGoogle Scholar
  38. 38.
    Wlodarska-Kowalczuk M, Weslawski JM (2001) Impact of climate warming on Arctic benthic biodiversity: a case study of two Arctic glacial bays. Climate Res 18:127–132CrossRefGoogle Scholar
  39. 39.
    Zobell CE (1946) Marine microbiology. Chronica Botanica Co., Waltham, MAGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • T. N. R. Srinivas
    • 1
  • S. S. S. Nageswara Rao
    • 1
  • P. Vishnu Vardhan Reddy
    • 1
  • M. S. Pratibha
    • 1
  • B. Sailaja
    • 1
  • B. Kavya
    • 1
  • K. Hara Kishore
    • 1
  • Z. Begum
    • 1
  • S. M. Singh
    • 2
  • S. Shivaji
    • 1
    Email author
  1. 1.Centre for Cellular and Molecular BiologyHyderabadIndia
  2. 2.National Centre for Antarctic and Ocean ResearchGoaIndia

Personalised recommendations