Skip to main content
Log in

Pseudomonas extremaustralis sp. nov., a Poly(3-hydroxybutyrate) Producer Isolated from an Antarctic Environment

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-negative, mobile, rod-shaped, non-spore-forming bacterium (strain 14-3T) was isolated from a temporary pond in Antarctica. On the basis of 16S rRNA gene sequence similarity, strain 14-3T was shown to belong to the genus Pseudomonas sensu stricto. Physiological and biochemical tests supported the phylogenetic affiliation. Strain 14-3T is closely related to Pseudomonas veronii DSM 11331T, sharing 99.7% sequence similarity. DNA–DNA hybridization experiments between the two strains showed only moderate reassociation similarity (35.1%). Tests for arginine dihydrolase and nitrate reduction were positive, while those for denitrification, indol production, glucose acidification, urease, ß-galactosidase, esculin, caseine and gelatin hydrolysis were negative. Growth of this bacterium occurred in a range from 4 to 37°C but not at 42°C. It accumulated poly(3-hydroxybutyrate) when grown on sodium octanoate medium. Strain 14-3T therefore represents the type strain of a new species, for which the name Pseudomonas extremaustralis sp. nov. is proposed. The type strain 14-3T has been deposited as DSM 17835T and as CIP 109839T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Bacteriol 50:1563–1589

    CAS  Google Scholar 

  3. Ayub ND, Pettinari MJ, Ruiz JA, López NI (2004) A polyhydroxybutyrate-producing Pseudomonas sp. isolated from Antarctic environments with high stress resistance. Curr Microbiol 49:170–174

    Article  PubMed  CAS  Google Scholar 

  4. Ayub ND, Pettinari MJ, Méndez BS, López NI (2006) Impaired polyhydroxybutyrate biosynthesis from glucose in Pseudomonas sp. 14-3 is due to a defective beta-ketothiolase gene. FEMS Microbiol Lett 264:125–131

    Article  PubMed  CAS  Google Scholar 

  5. Ayub ND, Pettinari MJ, Méndez BS, López NI (2007) The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island. Plasmid 58:240–248

    Article  PubMed  CAS  Google Scholar 

  6. Ayub ND, Tribelli PM, López NI (2009) Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low-temperature adaptation. Extremophiles 13:59–66

    Article  PubMed  CAS  Google Scholar 

  7. Behrendt U, Ulrich A, Schumann P (2003) Fluorescent pseudomonads associated with the phyllosphere of grasses; Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. Int J Syst Evol Microbiol 53:1461–1469

    Article  PubMed  CAS  Google Scholar 

  8. Bozal N, Montes MJ, Mercadé E (2007) Pseudomonas guineae sp. nov., a novel psychrotolerant bacterium from an Antarctic environment. Int J Syst Evol Microbiol 57:2609–2612

    Article  PubMed  CAS  Google Scholar 

  9. Braunegg G, Sonnleitner B, Lafferty RM (1978) A rapid gas chromatographic method for the determination of poly-ß-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol 6:29–37

    Article  CAS  Google Scholar 

  10. Bruni V, Gugliandolo C, Maugeri T, Allegra A (1999) Psychrotrophic bacteria from a coastal station in the Ross Sea (Terra Nova Bay, Antarctica). New Microbiol 22:357–363

    PubMed  CAS  Google Scholar 

  11. Cashion P, Hodler-Franklin MA, McCully J, Franklin M (1977) A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466

    Article  PubMed  CAS  Google Scholar 

  12. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  13. de Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154:870–878

    PubMed  Google Scholar 

  14. Diard S, Carlier JP, Ageron E, Grimont PAD, Langlois V, Guerin P, Bouvet OMM (2002) Accumulation of Poly(3-hydroxybutyrate) from octanoate in different Pseudomonas belonging to the rRNA homology group I. Syst Appl Microbiol 25:183–188

    Article  PubMed  CAS  Google Scholar 

  15. Elomari M, Coroler L, Hoste B, Gillis M, Izard D, Leclerc H (1996) DNA relatedness among Pseudomonas strains isolated from natural mineral waters and proposal of Pseudomonas veronii sp. nov. Int J Syst Bacteriol 46:1138–1144

    Article  PubMed  CAS  Google Scholar 

  16. Escara JF, Hutton JR (1980) Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327

    Article  PubMed  CAS  Google Scholar 

  17. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    CAS  Google Scholar 

  18. Ivanova EP, Gorshkova NM, Sawabe T, Hayashi K, Kalinovskaya NI, Lysenko AM, Zhukova NV, Nicolau DV, Kuznetsova TA, Mikhailov VV, Christen R (2002) Pseudomonas extremorientalis sp. nov., isolated from drinking water reservoir. Int J Syst Evol Microbiol 52:2113–2120

    Article  PubMed  CAS  Google Scholar 

  19. Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005

    Article  Google Scholar 

  20. Kessler B, Palleroni NJ (2000) Taxonomic implications of synthesis of poly-ß-hydroxybutyrate and other poly-ß-hydroxyalkanoates by aerobic pseudomonads. Int J Syst Evol Microbiol 50:711–713

    PubMed  CAS  Google Scholar 

  21. King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307

    PubMed  CAS  Google Scholar 

  22. Kriss AE, Mitskevich IN, Rozanova EP, Osnitskaia LK (1976) Microbiological studies of the Wanda Lake (Antarctica). Mikrobiologiya 45:1075–1081

    CAS  Google Scholar 

  23. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  24. Maugeri TL, Gugliandolo C, Bruni V (1996) Heterotrophic bacteria in the Ross Sea (Terra Nova Bay, Antarctica). New Microbiol 19:67–76

    PubMed  CAS  Google Scholar 

  25. Moore ERB, Mau M, Arnscheidt A, Bottger EC, Hutson RA, Collins MD, Van De Peer Y, De Wachter R, Timmis KN (1996) The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships. Syst Appl Microbiol 19:478–492

    CAS  Google Scholar 

  26. Migula W (1894) Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1:235–238

    Google Scholar 

  27. Miller LT (1982) A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 16:584–586

    PubMed  CAS  Google Scholar 

  28. Ostle A, Holt JG (1982) Nile Blue A as a fluorescent stain for poly-hydroxybutyrate. Appl Environ Microbiol 44:238–241

    PubMed  CAS  Google Scholar 

  29. Rainey FA, Stackebrandt E (1993) 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia. FEMS Microbiol Lett 113:125–128

    Article  PubMed  CAS  Google Scholar 

  30. Reddy GSN, Matsumoto GI, Schumann P, Stackebrandt E, Shivaji S (2004) Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int J Syst Evol Microbiol 54:713–719

    Article  PubMed  CAS  Google Scholar 

  31. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  32. Shivaji S, Vijama Bhanu N, Aggarwal RK (1989) Isolation and identification of Pseudomonas spp. from Schirmacher Oasis, Antarctica. Appl Environ Microbiol 55:767–770

    PubMed  CAS  Google Scholar 

  33. Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56:3360–3367

    PubMed  CAS  Google Scholar 

  34. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  35. Vogel HJ, Bonner BN (1956) Acetyl-ornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218:97–106

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Rubén Quintana for collecting Antarctic samples, Sandra Kohaus for technical assistance and Frank Reinecke for help during phylogenetic tree analysis. This work was supported by grants from UBA and CONICET. M.J.P., N.I.L. and B.S.M. are career investigators from CONICET. P.M.T. has a graduate student fellowship from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy I. López.

Additional information

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain 14-3T is AJ583501.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, N.I., Pettinari, M.J., Stackebrandt, E. et al. Pseudomonas extremaustralis sp. nov., a Poly(3-hydroxybutyrate) Producer Isolated from an Antarctic Environment. Curr Microbiol 59, 514–519 (2009). https://doi.org/10.1007/s00284-009-9469-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9469-9

Keywords

Navigation