Skip to main content

Advertisement

Log in

A Novel Antimicrobial Peptide from Crotalaria pallida Seeds with Activity Against Human and Phytopathogens

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

An actual severe problem in agriculture consists of an expressive increase of economical losses caused by fungi and resistant bacteria toward antibiotics. In order to find a solution to this problem, several studies have been concentrating on the screening of novel plant defense peptides with antimicrobial activities. These peptides are commonly characterized by having low molecular masses and cationic charges. The present work reports the purification and characterization of a novel plant peptide with molecular mass of 5340 Da, named Cp-AMP, from seeds of C. pallida, a typical plant from Caatinga biome. Purification was achieved using a size exclusion S-200 column followed by reversed-phase chromatography on Vydac C18-TP column. In vitro assays indicated that Cp-AMP was able to inhibit the development of filamentous fungi Fusarium oxysporum as well as the gram-negative bacterium Proteus sp. The identification of Cp-AMP could contribute, in the near future, to the development of biotechnological products, such as transgenic plants with enhanced resistance to pathogenic fungi and/or of antibiotics production derived from plant sources in order to control bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smith IM, Dunez J, Phillips DH, Lelliot RA, Archer SA (1988) European handbook of plant diseases. Blackwell Science Publications, Oxford, p 583

    Book  Google Scholar 

  2. Jones JP, Jones JB, Miller W (1982) Fusarium wilt on tomato. Florida Department of Agriculture and Consumer Services Division of Plant Industry, Tallahassee, FL, Plant Path Cir. No. 237, 2 p

  3. Sabbuba NA, Mahenthiralingam E, Stickler DJ (2003) Molecular epidemiology of Proteus mirabilis infections of the catheterized urinary tract. J Clin Microbiol 41:4961–4965

    Article  PubMed  CAS  Google Scholar 

  4. Franco OL, Murad AM, Leite JR, Mendes PAM, Prates MV, Bloch C Jr (2006) Identification of a cowpea γ-thionin with bactericidal activity. FEBS J 273:3489–3497

    Article  PubMed  CAS  Google Scholar 

  5. Pelegrini PB, Franco OL (2005) Plant γ-thionins: novel insights on the mechanism of action of a multi-functional class of defense proteins. Int J Biochem Cell Biol 37:2239–2253

    Article  PubMed  CAS  Google Scholar 

  6. Vasconcelos IM, Oliveira JT (2004) Antinutritional properties of plant lectins. Toxicon 44:385–403

    Article  PubMed  CAS  Google Scholar 

  7. Wang HX, Ng TB (2007) An antifungal peptide from red lentil seeds. Peptides 28:547–552

    Article  PubMed  CAS  Google Scholar 

  8. Pelegrini PB, Noronha EF, Muniz MA, Vasconcelos IM, Chiarello MD, Oliveira JT, Franco OL (2006) An antifungal peptide from passion fruit (Passiflora edulis) seeds with similarities to 2S albumin proteins. Biochim Biophys Acta 1764:1141–1146

    PubMed  CAS  Google Scholar 

  9. Cammue BPA, Thevissen K, Hendricks M, Eggermont K, Goderis IJ, Proost P, Van Damme J, Osborn RW, Guerbette F, Kader JC, Broekaert WF (1995) A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol 109:445–455

    Google Scholar 

  10. Carvalho AO, Souza-Filho GA, Ferreira BS, Branco AT, Araújo IS, Fernandes KVS, Retamal CA, Gomes VM (2006) Cloning and characterisation of a cowpea seed lipid transfer protein cDNA: expression analyses during seed development and under fungal and cold stresses in seedlings tissues. Plant Physiol Biochem 44:732–742

    Article  PubMed  CAS  Google Scholar 

  11. Gomes CEM, Barbosa AEAD, Macedo LLP, Pitanga JCM, Moura FT, Oliveira AS, Moura RM, Queiroz AFS, Macedo FP, Andrade LBS, Vidal MS, Sales MP (2005) Effect of a trypsin inhibitor from Crotalaria pallida seeds on Callosobruchus maculatus (cowpea weevil) and Ceratitis capitata (fruit fly). Plant Physiol Biochem 43:1095–1102

    Article  PubMed  CAS  Google Scholar 

  12. Laemmli UK (1970) Cleavage of structural proteins using assembly of the head of the bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  13. Bradford MM (1976) A rapid and sensitive method from quantitation of microgram quantities of protein utilizing the principle of dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  14. Pelegrini PB, Murad AM, Silva LP, dos Santos RCP, Costa FT, Tagliari PD, Bloch C Jr, Noronha EF, Miller RNG, Franco OL (2008) Identification of a novel storage glycine-rich peptide from guava (Psidium guajava) seeds with activity against gram-negative bacteria. Peptides 29:1271–1279

    Google Scholar 

  15. Pelegrini PB, Lay FT, Murad AM, Anderson MA, Franco OL (2008) Novel insights on the mechanism of action of alpha-amylase inhibitors from the plant defensin family. Proteins 73:719–729

    Google Scholar 

  16. Gomes VM, Carvalho AO, Cunha MD, Keller MN, Bloch C Jr, Deodolindo P, Alves EW (2005) Purification and characterization of a novel peptide with antifungal activity from Bothrops jararaca venom. Toxicon 45:817–827

    Article  PubMed  CAS  Google Scholar 

  17. Chiou TT, Wu JL, Chen TT, Lu JK (2005) Molecular cloning and characterization of cDNA of penaeidin-like antimicrobial peptide from tiger shrimp (Penaeus monodon). Mar Biotechnol NY 7:119–127

    Article  PubMed  CAS  Google Scholar 

  18. Wang HX, Ng TB (2005) An antifungal peptide from the coconut. Peptides 26:2392–2396

    Article  PubMed  CAS  Google Scholar 

  19. Wang HX, Ng TB (2006) An antifungal peptide from baby lima bean. Appl Microbiol Biotechnol 73:576–581

    Article  PubMed  CAS  Google Scholar 

  20. Costa FT, Neto SM, Noronha EF, Bloch C Jr, Franco OL (2007) Susceptibility of human pathogenic bacteria to novel antimicrobial peptides from sesame kernels. Curr Microbiol 55:162–166

    Article  PubMed  CAS  Google Scholar 

  21. Grgurina I, Bensaci M, Pocsfalvi G, Mannina L, Cruciani O, Fiore A, Fogliano V, Sorensen KN, Takemoto JY (2005) Novel cyclic lipodepsipeptide from Pseudomonas syringae pv. lachrymans strain 508 and syringopeptin antimicrobial activities. Antimicrob Agents Chemother 49:5037–5045

    Article  PubMed  CAS  Google Scholar 

  22. Montesinos E (2007) Antimicrobial peptides and plant disease control. FEMS Microbiol Lett 270:1–11

    Article  PubMed  CAS  Google Scholar 

  23. Xiao-Yan S, Qing-Tao S, Shu-Tao X, Xiu-Lan C, Cai-Yun S, Yu-Zhong Z (2006) Broad-spectrum antimicrobial activity and high stability of trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol Lett 260:119–125

    Article  PubMed  Google Scholar 

  24. de Lucca AJ, Cleveland TE, Wedge DE (2005) Plant-derived antifungal proteins and peptides. Can J Microbiol 51:1001–1014

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Católica de Brasília (UCB) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maurício P. Sales or Octávio L. Franco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelegrini, P.B., Farias, L.R., Saude, A.C.M. et al. A Novel Antimicrobial Peptide from Crotalaria pallida Seeds with Activity Against Human and Phytopathogens. Curr Microbiol 59, 400–404 (2009). https://doi.org/10.1007/s00284-009-9451-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9451-6

Keywords

Navigation