Skip to main content

Advertisement

Log in

Leishmania amazonensis Growth Inhibitors: Biological and Theoretical Features of Sulfonamide 4-Methoxychalcone Derivatives

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Current drugs for treating leishmaniasis are still associated with significant toxicity and failure rates. Thus, new effective and less toxic antileishmanial agents are still in need. Herein, we tested a series of sulfonamide 4-methoxychalcone derivatives against L. amazonensis promastigote and amastigote forms to identify its antileishmanial profile against this species compared to L. braziliensis. In addition, we used molecular modeling tools to determine stereoelectronic features that may lead to the antileishmanial profile. Interestingly, all tested compounds were able to affect L. amazonensis promastigote form in a concentration-dependent manner and with low cytotoxicity, except for derivative 3g. However, our results showed that compound 3f (para-Cl) presents the best profile against both L. amazonensis forms (promastigote and amastigote), differently from that observed for L. braziliensis, when compound 3i was the most active. Structure–activity relationship (SAR) analysis of these derivatives pointed molecular volume, HOMO density, and conformational aspects as important characteristics for parasitic profile. Overall, sulfonamide 4-methoxychalcone derivatives may be pointed out not only as lead compounds for treating leishmaniasis (i.e., 3f) but also as experimental tools presenting parasite-selectivity (i.e., 3i).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ali A (2002) Leishmaniasis and HIV/AIDS co-infections: review of common features and management experiences. Ethiop Med J 40:37–49

    PubMed  Google Scholar 

  2. Andrighetti-Fröhner CR, Oliveira KN, Gaspar-Silva D, Pacheco LK, Joussef AC, Steindel M, Simões CMO, Souza AMT, Magalhães UO, Afonso IF, Rodrigues CR, Nunes RJ, Castro HC (2009) Synthesis, biological evaluation and SAR of sulfonamide 4-methoxychalcone derivatives with potential antileishmanial activity. Eur J Med Chem 44:755–763

    Article  PubMed  Google Scholar 

  3. Balanco JMF, Pral EMF, Silva S, Bijovsky AT, Mortara RA, Alfieri SC (1998) Axenic cultivation and partial characterization of Leishmania braziliensis amastigote-like stages. Parasitology 116:103–113

    Article  PubMed  Google Scholar 

  4. Bhattacharya G, Herman J, Delfin D, Salem MM, Barszcz T, Mollet M, Riccio G, Brun R, Werbovetz KA (2004) Synthesis and antitubulin activity of N-1- and N-4-substituted 3,5-dinitro sulfanilamides against African trypanosomes and Leishmania. J Med Chem 47:1823–1832

    Article  PubMed  CAS  Google Scholar 

  5. Boeck P, Falcão CAB, Leal PC, Yunes RA, Cechinel Filho V, Torres-Santos VEC, Rossi-Bergmann B (2006) Synthesis of chalcone analogues with increased antileishmanial activity. Bioorg Med Chem 14:1538–1545

    Article  PubMed  CAS  Google Scholar 

  6. Chen M, Zhai L, Christensen SB, Theander TG, Kharazmi A (2001) Inhibition of fumarate reductase in Leishmania major and l-donovani by chalcones. Antimicrob Agents Chemother 45:2023–2029

    Article  PubMed  CAS  Google Scholar 

  7. Chibale K, Haupt H, Kendrick H, Yardley V, Saravanamuthu A, Fairlamb AH, Croft SL (2001) Antiprotozoal and cytotoxicity evaluation of sulfonamide and urea analogues of quinacrine. Bioorg Med Chem Lett 11:2655–2657

    Article  PubMed  CAS  Google Scholar 

  8. Coura JR, Galvão-Castro B, Grimaldi Júnior G (1987) Disseminated American cutaneous leishmaniasis in a patient with AIDS. Mem Inst Oswaldo Cruz 82:581–582

    PubMed  CAS  Google Scholar 

  9. Croft SL, Coombs GH (2003) Leishmaniasis—current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 19:502–508

    Article  PubMed  CAS  Google Scholar 

  10. Croft SL, Barrett MP, Urbina J (2005) Chemotherapy of trypanosomiases and leishmaniasis. Trends Parasitol 21:508–512

    Article  PubMed  CAS  Google Scholar 

  11. De Benedetti PG, Fanelli F (2009) Ligand–receptor communication and drug design. Curr Protein Pept Sci 10:186–193

    Article  PubMed  Google Scholar 

  12. Ferreira VF, Jorqueira A, Souza AM, da Silva MN, de Souza MC, Gouvea RM, Rodrigues CR, Pinto AV, Castro HC, Santos DO, Araujo HP, Bourguignon SC (2006) Trypanocidal agents with low cytotoxicity to mammalian cell line: a comparison of the theoretical and biological features of lapachone derivatives. Bioorg Med Chem 15:5459–5466

    Article  Google Scholar 

  13. Guru PY, Agrawal AK, Singha UK, Singhal A, Gupta CM (1989) Drug targeting in Leishmania donovani infections using tuftsin-bearing liposomes as drug vehicles. FEBS Lett 245:204–208

    Article  PubMed  CAS  Google Scholar 

  14. Hsieh HK, Lee TH, Wang JP, Wang JJ, Lin CN (1998) Synthesis and anti-inflammatory effect of chalcones and related compounds. Pharm Res 15:39–46

    Article  PubMed  CAS  Google Scholar 

  15. Lunardi F, Guzela M, Rodrigues AT, Correa R, Eger-Mangrich I, Steindel M, Grisard EC, Assreuy J, Calixto JB, Santos AR (2003) Trypanocidal and leishmanicidal properties of substitution-containing chalcones. Antimicrob Agents Chemother 47:1449–1451

    Article  PubMed  CAS  Google Scholar 

  16. Mueller M, Ritmeijer K, Balasegaram M, Koummuki Y, Santana MR, Davidson R (2007) Unresponsiveness to AmBisome in some Sudanese patients with kata-azar. Trans R Soc Trop Med Hyg 101:19–24

    Article  PubMed  CAS  Google Scholar 

  17. Ni L, Meng CQ, Sikorski JA (2004) Recent advances in therapeutic chalcones. Expert Opin Ther Pat 14:1669–1691

    Article  CAS  Google Scholar 

  18. Nielsen SF, Boesen T, Larsen M, Schonning K, Kromann H (2004) Antibacterial chalcones–bioisosteric replacement of the 4′-hydroxy group. Bioorg Med Chem 12:3047–3054

    Article  PubMed  CAS  Google Scholar 

  19. Owa T, Okauchi T, Yoshimatsu K, Sugi NH, Ozawa Y, Nagasu T, Koyanagi N, Okabe T, Kitoh K, Yoshino H (2000) A focused compound library of novel N-(7-indolyl)benzenesulfonamides for the discovery of potent cell cycle inhibitors. Bioorg Med Chem Lett 10:1223–1226

    Article  PubMed  CAS  Google Scholar 

  20. Santos DO, Coutinho CER, Madeira MF, Gruszkowski CCB, Vieira RT, Nascimento SB, Bernardino AMR, Bourguignon SC, Côrtes-Real S, Pinho RT, Rodrigues CR, Castro HC (2008) Leishmaniasis treatment, a challenge that remains: a review. Parasitol Res 103:1–10

    Article  PubMed  Google Scholar 

  21. Shaha C (2006) Apoptosis in Leishmania species and its relevance to disease pathogenesis. Ind J Med Res 123:233–244

    CAS  Google Scholar 

  22. Singh S, Sivakumar R (2004) Challenges and new discoveries in the treatment of leishmaniasis. J Infect Chemother 10:307–315

    Article  PubMed  Google Scholar 

  23. Soong L, Duboise SM, Kima P, McMahon-Pratt D (1995) Leishmania pifanoi amastigote antigens protect mice against cutaneous leishmaniasis. Infect Immun 63:3559–3566

    PubMed  CAS  Google Scholar 

  24. Trouiller P, Olliaro P, Torreele E, Orbinski J, Laing R, Ford N (2002) Drug development for neglected diseases: a deficient market and a public-health policy failure. Lancet 359:2188–2194

    Article  PubMed  Google Scholar 

  25. Uchiumi F, Hatano T, Ito H, Yoshida T, Tanuma SI (2003) Transcriptional suppression of the HIV promoter by natural compounds. Antiviral Res 58:89–98

    Article  PubMed  CAS  Google Scholar 

  26. World Health organization (WHO)—background information. http://www.who.int/leishmaniasis/en/. Accessed 12 Oct 2008a

  27. World Health Organization (WHO)—control of neglected diseases. http://www.who.int/neglected_diseases/diseases/en/. Accessed 12 Oct 2008b

  28. World Health organization (WHO)—seventeenth programme report of the UNICEF/UNDP/World Bank/WHO special programme for research and training in tropical diseases, Tropical disease research: progress 2005–2006. http://www.who.int/tdr/diseases/leish/default.htm. Accessed 12 Oct 2008c

  29. Wu JH, Wang XH, Yi YH, Lee KH (2003) Anti-AIDS agents 54. A potent anti-HIV chalcone and flavonoids from genus Desmos. Bioorg Med Chem Lett 13:1813–1815

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico/CNPq (Brazil), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Universidade Federal Fluminense (UFF) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena C. Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, A.M.T., Castro, H.C., Brito, M.A. et al. Leishmania amazonensis Growth Inhibitors: Biological and Theoretical Features of Sulfonamide 4-Methoxychalcone Derivatives. Curr Microbiol 59, 374–379 (2009). https://doi.org/10.1007/s00284-009-9447-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9447-2

Keywords

Navigation