Skip to main content
Log in

Action of Tributyltin (TBT) on the Lipid Content and Potassium Retention in the Organotins Degradating Fungus Cunninghamella elegans

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The purpose of the presented paper was to study the effect of high concentrations of tributyltin (TBT) on the potassium retention and fatty acid (FA) composition of the fungus Cunninghamella elegans recognized as a very efficient TBT degrader. An increase in TBT had a strong influence on the potassium concentration in the fungus. In growth medium without TBT, the potassium content of the fungal cells was 5.8 mg K+ g dry weight−1. The maximum concentration of K+ was 15.06 mg g−1 dry weight at 30 mg l−1 of TBT. The major FAs that characterized the tested strain were C16:0, C18:1, C18:2, C18:3 and C18:0. TBT in the concentration range 5–30 mg l−1 strongly influenced the FA composition. In the presence of the organotin, the degree of saturation increased. It suggests that the observed changes promote an increase in the lipid ordering of the membrane by reducing its permeability and inhibiting potassium ion efflux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Avis TJ, Michaud M, Tweddell RJ (2007) Role of lipid composition and lipid peroxidation in the sensitivity of fungal plant pathogens to aluminum chloride and sodium metabisulfite. Appl Environ Microbiol 73:2820–2824

    Article  PubMed  CAS  Google Scholar 

  2. Bernat P, Długoński J (2002) Degradation of tributyltin by the filamentous fungus Cunninghamella elegans, with involvement of cytochrome P-450. Biotech Lett 24:1971–1974

    Article  CAS  Google Scholar 

  3. Bernat P, Długoński J (2006) Acceleration of tributyltin chloride (TBT) degradation in liquid cultures of the filamentous fungus Cunninghamella elegans. Chemosphere 62:3–8

    Article  PubMed  CAS  Google Scholar 

  4. Bernat P, Długoński J (2007) Tributyltin chloride interactions with fatty acids composition and degradation ability of the filamentous fungus Cunninghamella elegans. Int Biodeter Biodegr 60:133–136

    Article  CAS  Google Scholar 

  5. Brown GR, Cummings SP (2001) Potassium uptake and retention by Oceanomonas baumannii at low water activity in the presence of phenol. FEMS Microbiol Lett 205:37–41

    Article  PubMed  CAS  Google Scholar 

  6. Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87:1–14

    Article  PubMed  CAS  Google Scholar 

  7. Dercova K, Certik M, Malova A, Sejakova Z (2004) The effect of chlorophenols on membrane lipids of bacterial cells. Int Biodeter Biodegr 54:251–254

    Article  CAS  Google Scholar 

  8. Falcioni G, Gabbianelli R, Santroni AM, Zolese G, Griffiths D, Bertoli E (1996) Plasma membrane perturbation induced by organotins onerythrocytes from Salmo irideus trout. Appl Organomet Chem 10:451–457

    Article  CAS  Google Scholar 

  9. Gadd GM (2000) Microbial interactions with tributyltin compounds: detoxification, accumulation, and environmental fate. Sci Total Environ 258:119–127

    Article  PubMed  CAS  Google Scholar 

  10. International convention on the control of harmful anti-fouling systems on ships http://www.imo.org/Conventions/mainframe.asp?topic_id=529. Accessed 15 May 2008

  11. Laurence OS, Cooney JJ, Gadd GM (1989) Toxicity of organotins towards the marine yeast Debaromyces hansenii. Microb Ecol 17:275–285

    Article  CAS  Google Scholar 

  12. Liu HG, Wang Y, Lian L, Xu LH (2006) Tributyltin induces DNA damage as well as oxidative damage in rats. Environ Toxicol 21:166–171

    Article  PubMed  CAS  Google Scholar 

  13. Lobos JH, Leib TK, Su TM (1992) Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium. Appl Environ Microbiol 58:1823–1831

    PubMed  CAS  Google Scholar 

  14. Luan TG, Jin J, Chan SMN, Wong YS, Tam NFY (2006) Biosorption and biodegradation of tributyltin (TBT) by alginate immobilized Chlorella vulgaris beads in several treatment cycles. Process Biochem 41:1560–1565

    Article  CAS  Google Scholar 

  15. Macpherson N, Shabala L, Rooney H, Jarman MG, Davies JM (2005) Plasma membrane H+ and K+ transporters are involved in the weak-acid preservative response of disparate food spoilage yeasts. Microbiology 151:1995–2003

    Article  PubMed  CAS  Google Scholar 

  16. Masia A, Avery SV, Zoroddu MA, Gadd GM (1998) Enrichment with a polyunsaturated fatty acid enhances the survival of Saccharomyces cerevisiae in the presence of tributyltin. FEMS Microbiol Lett 167:321–326

    Article  PubMed  CAS  Google Scholar 

  17. Mutnuri S, Vasudevan N, Kastner M, Heipieper HJ (2005) Changes in fatty acid composition of Chromohalobacter israelensis with varying salt concentrations. Curr Microbiol 50:151–154

    Article  PubMed  CAS  Google Scholar 

  18. Paraszkiewicz K, Bernat P, Długoński J (2009) Effect of nickel, copper, and zinc on emulsifier production and saturation of cellular fatty acids in the filamentous fungus Curvularia lunata. Int Biodeter Biodegr 63:100–105

    Article  CAS  Google Scholar 

  19. Reader S, Steen HB, Denizeau F (1994) Intracellular calcium and pH alterations induced by tri-n-butyltin chloride in isolated rainbow trout hepatocytes: a flow cytometric analysis. Arch Biochem Biophys 312:407–413

    Article  PubMed  CAS  Google Scholar 

  20. Rodríguez-Navarro A (2000) Potassium transport in fungi and plants. Biochim Biophys Acta 1469:1–30

    PubMed  Google Scholar 

  21. Słaba M, Długoński J (2004) Zinc and lead uptake by mycelium and regenerating protoplasts of Verticillium marquandii. World J Microbiol Biotechnol 20:323–328

    Article  Google Scholar 

  22. Tam NF, Chong AM, Wong YS (2002) Removal of tributyltin (TBT) by live and dead microalgal cells. Mar Pollut Bull 45:362–371

    Article  PubMed  CAS  Google Scholar 

  23. Tobin JM, Cooney JJ (1999) Action of inorganic tin and organotins on a hydrocarbon-using yeast, Candida maltosa. Arch Environ Contam Toxicol 36:7–12

    Article  PubMed  CAS  Google Scholar 

  24. White JS, Tobin JM (2004) Inorganic tin and organotin interactions with Candida maltosa. Appl Microbiol Biotechnol 63:445–451

    Article  PubMed  CAS  Google Scholar 

  25. White JS, Tobin JM, Cooney JJ (1999) Organotin compounds and their interactions with microorganisms. Can J Microbiol 45:541–554

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the Ministry of Science and Higher Education of the Republic of Poland grant (No. 31/HIS/2007/02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Długoński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernat, P., Słaba, M. & Długoński, J. Action of Tributyltin (TBT) on the Lipid Content and Potassium Retention in the Organotins Degradating Fungus Cunninghamella elegans . Curr Microbiol 59, 315–320 (2009). https://doi.org/10.1007/s00284-009-9436-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9436-5

Keywords