Skip to main content
Log in

Emulsifying Agent Production During PAHs Degradation by the White Rot Fungus Pleurotus Ostreatus D1

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

For the first time the production of an emulsifying agent during phthalic, 2,2′-diphenic and α-hydroxy-β-naphthoic acids, phenanthrene, anthracene, fluorene, pyrene, fluoranthene, and chrysene degradation by white rot fungus Pleurotus ostreatus was found. The emulsifying activity of the cultivation medium after degradation of these compounds was assessed. Maximal activities were found in the presence of chrysene (48.4%) and α-hydroxy-β-naphthoic acid (52.2%). Emulsifying activity inversely dependent on the water solubility of the compounds used. Versatile peroxidase was produced concurrently with the emulsifying agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bezalel L, Hadar Y, Cerniglia C (1997) Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 63:2495–2501

    PubMed  CAS  Google Scholar 

  2. Bezalel L, Hadar Y, Fu P, Freeman J, Cerniglia C (1996) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2554–2559

    PubMed  CAS  Google Scholar 

  3. Bezalel L, Hadar Y, Fu P, Freeman J, Cerniglia C (1996) Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2547–2553

    PubMed  CAS  Google Scholar 

  4. Bogan B, Lamar R (1995) One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 61:2631–2635

    PubMed  CAS  Google Scholar 

  5. Böhmer S, Messner K, Srebotnik E (1998) Oxidation of phenanthrene by a fungal laccase in the presence of 1-hydroxybenztriazole and unsaturated lipids. Biochem Biophys Res Commun 244:233–238

    Article  PubMed  Google Scholar 

  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microorganisms qualities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  7. Cerniglia C (1993) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  Google Scholar 

  8. Cooper D, Goldenberg B (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    PubMed  CAS  Google Scholar 

  9. Das P, Mukherjee S, Sen R (2008) Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by biosurfactant producing bacterium of marine origin. Chemosphere 72:1229–1234

    Article  PubMed  CAS  Google Scholar 

  10. Deziel E, Paquette G, Villemur R, Lepine F, Bisaillon J-G (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62:1908–1912

    PubMed  CAS  Google Scholar 

  11. Garcia-Junco M, De Olmedo E, Ortega-Calvo J-J (2001) Bioavailability of solid and non-aqueous phase liquid (NAPL)-dissolved phenanthrene to the biosurfactant-producing bacterium Pseudomonas aeruginosa 19SJ. Environ Microbiol 3:561–569

    Article  PubMed  CAS  Google Scholar 

  12. Heinfling A, Martinez M, Martinez A, Bergbauer M, Szewzyk U (1998) Purification and characterization of peroxidases from dye-decolorizing fungus Bjerkandera adusta. FEMS Microbiol Lett 165:43–50

    Article  PubMed  CAS  Google Scholar 

  13. Jager A, Croan S, Kirk K (1985) Production of ligninase and degradation of lignin in agitated submerged cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 50:1274–1278

    PubMed  Google Scholar 

  14. Kanaly R, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067

    Article  PubMed  CAS  Google Scholar 

  15. Kotterman M, Rietberg H-J, Hage A, Field J (1998) Polycyclic aromatic hydrocarbon oxidation by the white-rot fungus Bjerkandera sp. strain BOS55 in the presence of nonionic surfactants. Biotech Bioeng 57:220–227

    Article  CAS  Google Scholar 

  16. Lu X, Zhang X, Li G, Zhang W (2003) Production of biosurfactant and its role in the biodegradation of oil hydrocarbons. J Environ Sci Health A Tox Hazard Subst Environ Eng 38:483–492

    PubMed  Google Scholar 

  17. Mahanty B, Pakshirajan K, Dasu V (2006) Production and properties of a biosurfactant applied to polycyclic aromatic hydrocarbon solubilization. Appl Biochem Biotechnol 134:129–141

    Article  PubMed  CAS  Google Scholar 

  18. Moen M, Hammel K (1994) Lipid peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl Environ Microbiol 60:1956–1961

    PubMed  CAS  Google Scholar 

  19. Moore M, Livingstone D, Widdows J (1989) Hydrocarbons in marine mollusks: biological effects and ecological consequences. In: Varanishi U (ed) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press, Boca Raton, FL, pp 291–328

    Google Scholar 

  20. Nikitina V, Marinina N, Boldyrev V, Ozerov R (2003) Characterization of some wild-growing strains of Veshenka with the purpose of their use in practical fungi-growing. Bull Bot Gard Saratov State Univ 2:169–176

    Google Scholar 

  21. Niku-Paavola M-L, Karhunen E, Salola P, Paunio V (1988) Ligninolytic enzymes of white-rot fungus Phlebia radiate. Biochem J 254:877–884

    PubMed  CAS  Google Scholar 

  22. Pahlman R, Pelkonen O (1987) Mutagenicity studies of different polycyclic aromatic hydrocarbons: the significance of enzymatic factors and molecular structure. Carcinogenesis 8:773–778

    Article  PubMed  CAS  Google Scholar 

  23. Pozdnyakova N, Rodakiewicz-Nowak J, Turkovskaya O, Haber J (2006) Oxidative degradation of polyaromatic hydrocarbons catalyzed by blue laccase from Pleurotus ostreatus D1 in the presence of synthetic mediators. Enzyme Microbe Technol 39:1242–1249

    Article  CAS  Google Scholar 

  24. Reddy C (1995) The potential for white-rot fungi in the treatment of pollutants. Curr Opin Biotechnol 6:320–328

    Article  CAS  Google Scholar 

  25. Ruiz-Duenas F, Camarero S, Perez-Boada M, Martinez M, Martinez A (2001) A new versatile peroxidases from Pleurotus. Biochem Soc Transact 29:116–122

    Article  CAS  Google Scholar 

  26. Song H-G (1999) Comparison of pyrene degradation by white rot fungi. World J Microbiol Biotechnol 15:669–672

    Article  CAS  Google Scholar 

  27. Wang R-Y, Liu J-X, Huang H-L, Yu Z, Xu X-M, Zeng G-M (2008) Effect of rhamnolipid on the enzyme production of two species of lignin-degrading fungi. Hunan Daxue Xuebao/J Hunan Univ Nat Sci 35:70–74

    Google Scholar 

Download references

Acknowledgments

We thank Dr. V. E. Nikitina for kindly providing us with P. ostreatus D1. We are grateful to Dmitry N. Tychinin for his assistance in preparation of the English text of this paper. This work was supported by the federal target-oriented programme “Issledovaniya I razrabotki po prioritetnym napravleniyam razvitiya nauchno-tekhnologicheskogo kompleksa Rossii na 2007–2012 gody” (Research and Developments on Priority Directions in the Development of Russian’s Science and Technology Complex for 2007–2012)—State contract no. 02.512.11.2210.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia N. Pozdnyakova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikiforova, S.V., Pozdnyakova, N.N. & Turkovskaya, O.V. Emulsifying Agent Production During PAHs Degradation by the White Rot Fungus Pleurotus Ostreatus D1. Curr Microbiol 58, 554–558 (2009). https://doi.org/10.1007/s00284-009-9367-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9367-1

Keywords

Navigation