Skip to main content

Advertisement

Log in

Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus Attachment Patterns on Glass Surfaces with Nanoscale Roughness

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Attachment tendencies of Escherichia coli K12, Pseudomonas aeruginosa ATCC 9027, and Staphylococcus aureus CIP 68.5 onto glass surfaces of different degrees of nanometer-scale roughness have been studied. Contact-angle and surface-charge measurements, atomic force microscopy (AFM), scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM) were employed to characterize substrata and bacterial surfaces. Modification of the glass surface resulted in nanometer-scale changes in the surface topography, whereas the physicochemical characteristics of the surfaces remained almost constant. AFM analysis indicated that the overall surface roughness parameters were reduced by 60–70%. SEM, CLSM, and AFM analysis clearly demonstrates that although E. coli, P. aeruginosa and S. aureus present significantly different patterns of attachment, all of the species exhibited a greater propensity for adhesion to the “nano-smooth” surface. The bacteria responded to the surface modification with a remarkable change in cellular metabolic activity, as shown by the characteristic cell morphologies, production of extracellular polymeric substances, and an increase in the number of bacterial cells undergoing attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Advincula MA, Petersen D, Rahemtulla F et al (2007) Surface analysis and biocorrosion properties of nanostructured surface sol-gel coatings on Ti6Al4v titanium alloy implants. J Biomed Mater Res B Appl Biomater 80:107–120

    Article  CAS  Google Scholar 

  2. Bakker DP, Busscher HJ, van der Mei HC (2002) Bacterial deposition in a parallel plate and a stagnation point flow chamber: microbial adhesion mechanisms depend on the mass transport conditions. Microbiology 148:597–603

    PubMed  CAS  Google Scholar 

  3. Bos R, van der Mei HC, Busscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions: its mechanisms and methods for study. FEMS Microbiol Rev 23:179–230

    Article  PubMed  CAS  Google Scholar 

  4. Bruinsma GM, Rustema-Abbing M, van der Mei HC et al (2001) Effects of cell surface damage on surface properties and adhesion of Pseudomonas aeruginosa. J Microbiol Methods 45:95–101

    Article  PubMed  CAS  Google Scholar 

  5. Burks GA, Velegol SB, Paramonova E et al (2003) Macroscopic and nanoscale measurements of the adhesion of bacteria with varying outer layer surface composition. Langmuir 19:2366–2371

    Article  CAS  Google Scholar 

  6. Busscher HJ, Norde W (2000) Limiting values for bacterial ζ potentials. J Biomed Mater Res 50:463–464

    Article  PubMed  CAS  Google Scholar 

  7. Canepari P, Boaretti M, Lleó MM et al (1990) Lipoteichoic acid as a new target for activity of antibiotics: mode of action of daptomycin (ly146032). Antimicrob Agents Chemother 34:1220–1226

    PubMed  CAS  Google Scholar 

  8. Chae MS, Schraft H, Truelstrup Hansen L et al (2006) Effects of physicochemical surface characteristics of Listeria monocytogenes strains on attachment to glass. Food Microbiol 23:250–259

    Article  PubMed  CAS  Google Scholar 

  9. Dong H, Onstotta TC, Kob C-HA et al (2002) Theoretical prediction of collision efficiency between adhesion-deficient bacteria and sediment grain surface. Colloids Surfaces B: Biointerfaces 24:229

    Article  CAS  Google Scholar 

  10. Eboigbodin EK, Newton ARJ, Routh FA et al (2006) Bacterial quorum sensing and cell surface electrokinetic properties. Appl Microbiol Biotechnol 73:669–675

    Article  PubMed  CAS  Google Scholar 

  11. Emerson RJ, Bergstrom TS, Liu Y et al (2006) Microscale correlation between surface chemistry, texture, and the adhesive strength of Staphylococcus epidermidis. Langmuir 22:11311–11321

    Article  PubMed  CAS  Google Scholar 

  12. Gottenbos B, Grijpma DW, Van der Mei CH et al (2001) Antimicrobial effects of positively charged surfaces on adhering gram-positive and gram-negative bacteria. J Antimicrob Chemother 48:7–13

    Article  PubMed  CAS  Google Scholar 

  13. Gross M, Cramton SE, Gotz F et al (2001) Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun 69:3423–3426

    Google Scholar 

  14. Howell D, Behrends B (2006) A review of surface roughness in antifouling coatings illustrating the importance of cutoff length. Biofouling 22:401–410

    Article  PubMed  CAS  Google Scholar 

  15. Korenevsky A, Beveridge TJ (2007) The surface physicochemistry and adhesiveness of Shewanella are affected by their surface polysaccharides. Microbiology 153:1872–1883

    Article  PubMed  CAS  Google Scholar 

  16. Mandlik A, Swierczynski A, Das A et al (2008) Pili in gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 16:33–40

    Article  PubMed  CAS  Google Scholar 

  17. Mitik-Dineva N, Wang J, Mocanasu CR et al (2008) Impact of nano-topography on bacterial attachment. Biotechnol J 3:536–544

    Article  PubMed  CAS  Google Scholar 

  18. O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Article  PubMed  CAS  Google Scholar 

  19. Öner D, McCarthy TJ (2000) Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir 16:7777–7782

    Article  Google Scholar 

  20. Petronis S, Berntsson K, Gold J et al (2000) Design and microstructuring of PDMS surfaces for improved marine biofouling resistance. J Biomater Sci Polym Ed 11:1051–1072

    Article  CAS  Google Scholar 

  21. Quéré D, Lafuma A, Bico J (2003) Slippy and sticky microtextured solids. Nanotechnology 14:1109–1112

    Article  Google Scholar 

  22. Riedewald F (2006) Bacterial adhesion to surfaces: the influence of surface roughness. PDA J Pharma Sci Technol 60:164–171

    Google Scholar 

  23. Scardino AJ, Harvey E, De Nys R (2006) Testing attachment point theory: diatom attachment on microtextured polyimide biomimics. Biofouling 22:55–60

    Article  PubMed  CAS  Google Scholar 

  24. Shellenberger K, Logan BE (2002) Effect of molecular scale roughness of glass beads on colloidal and bacterial deposition. Environ Sci Technol 36:184–189

    Article  PubMed  CAS  Google Scholar 

  25. Soni KA, Balasubramanian AK, Beskok A et al (2007) Zeta potential of selected bacteria in drinking water when dead, starved, or exposed to minimal and rich culture media. Curr Microbiol 56:93–97

    Article  PubMed  Google Scholar 

  26. Vadillo-Rodriguez V, Busscher HJ, Norde W et al (2004) Atomic force microscopy corroboration of bond aging for adhesion of Streptococcus thermophilus to solid substrata. J Colloid Interface Sci 278:251–254

    Article  PubMed  CAS  Google Scholar 

  27. van der Mei HC, Busscher HJ (2001) Electrophoretic mobility distributions of single-strain microbial populations. Appl Environ Microbiol 67:491–494

    Article  PubMed  Google Scholar 

  28. White JD, Stoddart RP (2005) Nanostructured optical fiber with surface-enhanced Raman scattering functionality. Opt Lett 30:598–600

    Article  Google Scholar 

  29. Whitehead AK, Verran J (2006) The effect of surface topography on the retention of microorganisms. Food Bioprod Process 84:253–259

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Australian Research Council (ARC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena P. Ivanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitik-Dineva, N., Wang, J., Truong, V.K. et al. Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus Attachment Patterns on Glass Surfaces with Nanoscale Roughness. Curr Microbiol 58, 268–273 (2009). https://doi.org/10.1007/s00284-008-9320-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9320-8

Keywords

Navigation