Skip to main content
Log in

A Single Mutation in the oprF mRNA Leader Confers Strict Translational Control by the Gac/Rsm System in Pseudomonas fluorescens CHA0

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The rhizobacterium Pseudomonas fluorescens CHA0 is able to antagonize fungal phytopathogens on a variety of crop plants, mainly due to the production of secondary metabolites that are coordinately upregulated by the global regulatory Gac/Rsm cascade. The two-component system GacS/GacA activates transcription of the three small regulatory RNAs RsmX, RsmY, and RsmZ, which counteract translational repression of target mRNAs by RsmA and RsmE proteins. In a search for novel Gac/Rsm targets based on the minimal sequence on mRNA leaders required for RsmA/RsmE control, the leader region of the major porin OprF emerged as a candidate. Although an isogenic CHA0 oprF mutant showed a reduced ability to attach to cucumber and tomato roots, suggesting a role for OprF in root colonization as a requisite for pathogen antagonism, a translational oprF′-′lacZ fusion was weakly regulated by Gac/Rsm despite its high sequence similarity to the hcnA leader. A single base substitution put the modified oprF 5′-UTR under strict control by Gac/Rsm. The results highlight the subtle sequence requirements of Gac/Rsm targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fuzznuc. Available at: http://bioweb.pasteur.fr/seqanal/interfaces/fuzznuc.html

  2. Azghani AO, Idell S, Bains M, Hancock RE (2002) Pseudomonas aeruginosa outer membrane protein F is an adhesin in bacterial binding to lung epithelial cells in culture. Microb Pathog 33:109–114

    Article  PubMed  CAS  Google Scholar 

  3. Bao Y, Lies DP, Fu H, Roberts GP (1991) An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria. Gene 109:167–168

    Article  PubMed  CAS  Google Scholar 

  4. Blumer C, Heeb S, Pessi G, Haas D (1999) Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci USA 96:14073–14078

    Article  PubMed  CAS  Google Scholar 

  5. Bodilis J, Barray S (2006) Molecular evolution of the major outer-membrane protein gene (oprF) of Pseudomonas. Microbiology 152:1075–1088

    Article  PubMed  CAS  Google Scholar 

  6. Brinkman FS, Schoofs G, Hancock RE, De Mot R (1999) Influence of a putative ECF sigma factor on expression of the major outer membrane protein, OprF, in Pseudomonas aeruginosa and Pseudomonas fluorescens. J Bacteriol 181:4746–4754

    PubMed  CAS  Google Scholar 

  7. Caetano-Anolles G, Favelukes G (1986) Quantitation of adsorption of rhizobia in low numbers to small legume roots. Appl Environ Microbiol 52:371–376

    Google Scholar 

  8. De Mot R, Vanderleyden J (1991) Purification of a root-adhesive outer membrane protein of root-colonizing Pseudomonas fluorescens. FEMS Microbiol Lett 81:323–328

    Article  Google Scholar 

  9. Del Sal G, Manfioletti G, Schneider C (1988) A one-tube plasmid DNA mini-preparation suitable for sequencing. Nucleic Acids Res 16:9878

    Article  PubMed  CAS  Google Scholar 

  10. Gilleland HE Jr, Stinnett JD, Eagon RG (1974) Ultrastructural and chemical alteration of the cell envelope of Pseudomonas aeruginosa, associated with resistance to ethylenediaminetetraacetate resulting from growth in a Mg2+-deficient medium. J Bacteriol 117:302–311

    PubMed  CAS  Google Scholar 

  11. Gotoh N, Wakebe H, Yoshihara E, Nakae T, Nishino T (1989) Role of protein F in maintaining structural integrity of the Pseudomonas aeruginosa outer membrane. J Bacteriol 171:983–990

    PubMed  CAS  Google Scholar 

  12. Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Peudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  PubMed  CAS  Google Scholar 

  13. Kay E, Dubuis C, Haas D (2005) Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci USA 102:17136–17141

    Article  PubMed  CAS  Google Scholar 

  14. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  15. Lapouge K, Sineva E, Lindell M, Starke K, Baker CS, Babitzke P, Haas D (2007) Mechanism of hcnA mRNA recognition in the Gac/Rsm signal transduction pathway of Pseudomonas fluorescens. Mol Microbiol 66:341–356

    Article  PubMed  CAS  Google Scholar 

  16. Lorck H (1948) Production of hydrocyanic acid by bacteria. Physiol Plantarum 1:142–146

    Article  CAS  Google Scholar 

  17. Nestorovich EM, Sugawara E, Nikaido H, Bezrukov SM (2006) Pseudomonas aeruginosa porin OprF: properties of the channel. J Biol Chem 281:16230–16237

    Article  PubMed  CAS  Google Scholar 

  18. Ngwai Y, Ochi K, Ogava Y, Adadchi Y (2005) Analysis of the protein profiles of the antibiotic resistant Salmonella typhimurium definitive phage type (dt) 104. Afr J Biotechnol 4:727–737

    CAS  Google Scholar 

  19. Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Cornelis P, Koedam N, Belanger RR (1999) Protection of cucumber against Pythium root rot by fluorescent pseudomonads: predominant role of induced resistance over siderophores and antibiosis. Plant Pathol 48:66–76

    Article  Google Scholar 

  20. Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GS, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS 3rd, Thomashow LS, Loper JE (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878

    Article  PubMed  CAS  Google Scholar 

  21. Reimmann C, Valverde C, Kay E, Haas D (2005) Posttranscriptional repression of GacS/GacA-controlled genes by the RNA-binding protein RsmE acting together with RsmA in the biocontrol strain Pseudomonas fluorescens CHA0. J Bacteriol 187:276–285

    Article  PubMed  CAS  Google Scholar 

  22. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  23. Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B, Gigot-Bonnefoy C, Reimmann C, Notz R, Defago G, Haas D, Keel C (2000) Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol 182:1215–1225

    Article  PubMed  CAS  Google Scholar 

  24. Schubert M, Lapouge K, Duss O, Oberstrass FC, Jelesarov I, Haas D, Allain FH (2007) Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. Nat Struct Mol Biol 14:807–813

    Article  PubMed  CAS  Google Scholar 

  25. Valverde C, Haas D (2008) Small RNAs controlled by two component systems. Chapter 5. In: Utsumi R (ed) Bacterial signal transduction: network and drug targets. Landes Bioscience, Austin, TX

    Google Scholar 

  26. Valverde C, Heeb S, Keel C, Haas D (2003) RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0. Mol Microbiol 50:1361–1379

    Article  PubMed  CAS  Google Scholar 

  27. Zuber S, Carruthers F, Keel C, Mattart A, Blumer C, Pessi G, Gigot-Bonnefoy C, Schnider-Keel U, Heeb S, Reimmann C, Haas D (2003) GacS sensor domains pertinent to the regulation of exoproduct formation and to the biocontrol potential of Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact 16:634–644

    Article  PubMed  CAS  Google Scholar 

  28. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Valverde.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table 1

MOESM1 Bacterial strains, plasmids and oligonucleotides used in this study (DOC 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez Crespo, M.C., Valverde, C. A Single Mutation in the oprF mRNA Leader Confers Strict Translational Control by the Gac/Rsm System in Pseudomonas fluorescens CHA0. Curr Microbiol 58, 182–188 (2009). https://doi.org/10.1007/s00284-008-9306-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9306-6

Keywords

Navigation