Skip to main content

Comparison of the Effects of NADH- and NADPH-Perturbation Stresses on the Growth of Escherichia coli


To better understand how the reducing power of either NADH or NADPH affects cell growth, Escherichia coli strains expressing either NADH-dependent or NADPH-dependent azoreductase (EC, which mediates the reduction of an azo dye, were cultured in glucose minimal medium in the presence of 200 μM methyl red. Growth rates in NADH-perturbed, NADPH-perturbed, and control cells were 0.05, 0.12, and 0.13 h−1, respectively. In addition, glucose consumption in NADH-perturbed cells was 10.8 g glucose/g cell, while that of control and NADPH-perturbed cells was very similar (3.6 vs 3.8 g glucose/g cell) during the perturbation phase. Therefore, NADH perturbation had a larger effect than NADPH on cellular growth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. Baek JH, Lee SY (2007) Transcriptome analysis of phosphate starvation response in Escherichia coli. J Microbiol Biotechnol 17:244–252

    PubMed  CAS  Google Scholar 

  2. Belenky P, Bogan KL, Brenner C (2007) NAD+ metabolism in health and disease. Trends Biochem Sci 32:12–19

    Article  PubMed  CAS  Google Scholar 

  3. Berger F, Ramirez-Hernandez MH, Ziegler M (2004) The new life of a centenarian: signalling functions of NAD(P). Trends Biochem Sci 29:111–118

    Article  PubMed  CAS  Google Scholar 

  4. Blumel S, Knackmuss HJ, Stolz A (2002) Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F. Appl Environ Microbiol 68:3948–3955

    Article  PubMed  CAS  Google Scholar 

  5. Brumaghim JL, Li Y, Henle E, Linn S (2003) Effects of hydrogen peroxide upon nicotinamide nucleotide metabolism in Escherichia coli: changes in enzyme levels and nicotinamide nucleotide pools and studies of the oxidation of NAD(P)H by Fe(III). J Biol Chem 278:42495–42504

    Article  PubMed  CAS  Google Scholar 

  6. Chen H, Wang RF, Cerniglia CE (2004) Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis. Protein Expr Purif 34:302–310

    Article  PubMed  CAS  Google Scholar 

  7. Chen H, Hopper SL, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151:1433–1441

    Article  PubMed  CAS  Google Scholar 

  8. Fabregat I, Revilla E, Machado A (1987) The NADPH consumption regulates the NADPH-producing pathways (pentose phosphate cycle and malic enzyme) in rat adipocytes. Mol Cell Biochem 74:77–81

    Article  PubMed  CAS  Google Scholar 

  9. Kim I, Yun H, Jin I (2007) Comparative proteomic analyses of the yeast Saccharomyces cerevisiae KNU5377 strain against menadione-induced oxidative stress. J Microbiol Biotechnol 17:207–217

    PubMed  CAS  Google Scholar 

  10. London J, Knight M (1966) Concentrations of nicotinamide nucleotide coenzymes in micro-organisms. J Gen Microbiol 44:241–254

    PubMed  CAS  Google Scholar 

  11. Minard KI, Jennings GT, Loftus TM, Xuan D, McAlister-Henn L (1998) Sources of NADPH and expression of mammalian NADP+-specific isocitrate dehydrogenases in Saccharomyces cerevisiae. J Biol Chem 273:31486–31493

    Article  PubMed  CAS  Google Scholar 

  12. Moat AG, Foster JW, Spector MP (2002) Microbial physiology. Wiley-Liss, New York

    Google Scholar 

  13. Nakanishi M, Yatome C, Ishida N, Kitade Y (2001) Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J Biol Chem 276:46394–46399

    Article  PubMed  CAS  Google Scholar 

  14. Nakayama T, Kimura T, Kodama M, Nagata C (1983) Generation of hydrogen peroxide and superoxide anion from active metabolites of naphthylamines and aminoazo dyes: its possible role in carcinogenesis. Carcinogenesis 4:765–769

    Article  PubMed  CAS  Google Scholar 

  15. Platzek T, Lang C, Grohmann G, Gi US, Baltes W (1999) Formation of a carcinogenic aromatic amine from an azo dye by human skin bacteria in vitro. Hum Exp Toxicol 18:552–559

    Article  PubMed  CAS  Google Scholar 

  16. Pollak N, Dolle C, Ziegler M (2007) The power to reduce: pyridine nucleotides—small molecules with a multitude of functions. Biochem J 402:205–218

    Article  PubMed  CAS  Google Scholar 

  17. Rungrassamee W, Liu X, Pomposiello PJ (2008) Activation of glucose transport under oxidative stress in Escherichia coli. Arch Microbiol 190:41–49

    Article  PubMed  CAS  Google Scholar 

  18. Schmidt K, Marx A, de Graaf AA, Wiechert W, Sahm H, Nielsen J, Villadsen J (1998) 13C tracer experiments and metabolite balancing for metabolic flux analysis: comparing two approaches. Biotechnol Bioeng 58:254–257

    Article  PubMed  CAS  Google Scholar 

  19. Wimpenny JW, Firth A (1972) Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen. J Bacteriol 111:24–32

    PubMed  CAS  Google Scholar 

Download references


The authors appreciate the financial support from the Korean Ministry of Education, Science and Technology (Basic Research Program of KOSEF) and Gyunggi Province (GRRC program to S. Kim, D. Moon, and P. Kim).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Pil Kim.

Additional information

Susie Kim, Doo-Bum Moon contributed equally to this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, S., Moon, DB., Lee, CH. et al. Comparison of the Effects of NADH- and NADPH-Perturbation Stresses on the Growth of Escherichia coli . Curr Microbiol 58, 159–163 (2009).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: