Skip to main content
Log in

Interference of Lactobacillus plantarum Strains in the In Vitro Conjugative Transfer of R-Plasmids

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Probiotic compounds, which are often constituted of lactobacilli, exert a number of health benefits through maintenance of the intestinal ecosystem balance. Among the important interactions that occur in the gut microbiota, plasmid transfer by mating is an increasing cause of concern, particularly when antibiotic-resistant genes are involved. Because lactobacilli seem to be able to influence this mechanism, the aim of the present work was to investigate the in vitro capability of two Lactobacillus plantarum strains (one bacteriocin producer and one nonproducer) to interfere with the conjugation processes. For this purpose different matings were performed adding to the donor and recipient cells L. plantarum 35d bac+ and L. plantarum 396/1 bac– as agents of interference. Conjugations added with a Staphylococcus aureus strain or without any agent of interference were used as controls. The results of our experiments demonstrated that both lactobacillus strains were able to decrease mating frequency. Statistically significant differences in the viable transconjugants were obtained in the presence and in the absence of the lactobacilli. The effect was almost the same with the two L. plantarum independent of bacteriocin production. In the trial performed with S. aureus, no decrease in mating frequency was observed, confirming that the capability to interfere with R-plasmid transfer ability could be a property of the tested L. plantarum strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ballongue J (1993) Bifidobacteria and probiotic action. In: Salminen S, Von Wright A (eds) Lactic acid bacteria. Dekker, New York, NY, pp 519–587

    Google Scholar 

  2. Barza M, Giuliano M, Jacobus NV, Gorbach SL (1987) Effect of broad-spectrum parenteral antibiotics on “colonization resistance” of intestinal microflora of humans. Antimicrob Agents Chemother 31:723–727

    PubMed  CAS  Google Scholar 

  3. de Niederhäusern S, Sabia C, Messi P, Guerrieri E, Manicardi G, Bondi M (2004) Glycopeptide-resistance transferability from vancomycin-resistant enterococci of human and animal source to Listeria spp. Lett Appl Microbiol 39:483–489

    Article  PubMed  CAS  Google Scholar 

  4. Duval-Iflah Y, Maisonneuve S, Ouriet MF (1998) Effect of fermented milk intake on plasmid transfer and on the persistence of transconjugants in the digestive tract of gnotobiotic mice. Antonie Van Leeuwenhoek 73:95–102

    Article  PubMed  CAS  Google Scholar 

  5. Gorbach SL (2002) Probiotics in the third millennium. Dig Liver Dis 34(Suppl. 2):S2–S7

    Article  PubMed  Google Scholar 

  6. Ilyin VK (2005) Microbiological status of cosmonauts during orbital spaceflights on Salyut and Mir orbital stations. Acta Astronaut 56:839–850

    Article  PubMed  CAS  Google Scholar 

  7. Jacob AE, Hobbs SJ (1974) Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis var. zymogenes. J Bacteriol 117:360–372

    PubMed  CAS  Google Scholar 

  8. Lee LK, Salminen S (1995) The coming of age of probiotics. Trends Food Sci Technol 6:241–246

    Article  Google Scholar 

  9. Macrina FL, Kopecko DJ, Jones KR, Ayers DJ, McCowen SM (1978) A multiple plasmid-containing Escherichia coli strain: Convenient source of size reference plasmid molecules. Plasmid 1:417–420

    Article  PubMed  CAS  Google Scholar 

  10. Maisonneuve S, Ouriet MF, Duval-Iflah Y (2000) Effects of yoghurt intake on plasmid transfer and colonisation with transconjugants in the digestive tract of mice associated with human faecal flora. FEMS Microbiol Ecol 31:241–248

    Article  PubMed  CAS  Google Scholar 

  11. Maisonneuve S, Ouriet MF, Duval-Iflah Y (2001) Comparison of yoghurt, heat-treated yoghurt, milk, and lactose effects on plasmid dissemination in gnotobiotic mice. Antonie Van Leeuwenhoek 79:199–207

    Article  PubMed  CAS  Google Scholar 

  12. Maisonneuve S, Ouriet MF, Duval-Iflah Y (2002) Interrelationships between dairy product intake, microflora metabolism, faecal properties and plasmid dissemination in gnotobiotic mice. Br J Nutr Feb 87:121–9

    Article  CAS  Google Scholar 

  13. Messi P, Bondi M, Sabia C, Battini R, Manicardi G (2001) Detection and preliminary characterization of a bacteriocin (plantaricin 35d) produced by a Lactobacillus plantarum strain. Int J Food Microbiol 64:193–198

    Article  PubMed  CAS  Google Scholar 

  14. Messi P, Guerrieri E, de Niederhäusern S, Sabia C, Bondi M (2006) Vancomycin-resistant enterococci (VRE) in meat and environmental samples. Int J Food Microbiol 107:218–222

    Article  PubMed  CAS  Google Scholar 

  15. Mombelli B, Gismondo MR (2000) The use of probiotics in medical practice. Int J Antimicrob Agents 16:531–536

    Article  PubMed  CAS  Google Scholar 

  16. Nord CE, Heimdahl A (1988) Impact of different antimicrobial agents on the colonization resistance in the intestinal tract with special reference to doxycycline. Scan J Infect Dis Suppl 53:50–58

    CAS  Google Scholar 

  17. Pena C, Pujol M, Ardanuy C, Ricart A, Pallares R, Linares J et al (1998) Epidemiology and successful control of a large outbreak caused by Klebsiella pneumoniae producing extended-spectrum beta-lactamases. Antimicrob Agents Chemother 42:53–58

    PubMed  CAS  Google Scholar 

  18. Reid G, Howard J, Gan BS (2001) Can bacterial interference prevent infection? Trends Microbiol 9:424–428

    Article  PubMed  CAS  Google Scholar 

  19. Reinthaler FF, Posch J, Feierl G, Wüst G, Haas D, Ruckenbauer G et al (2003) Antibiotic resistance of E. coli in sewage and sludge. Water Res 37:685–1690

    Article  CAS  Google Scholar 

  20. Ross RP, Fitzgerald G, Collins K, Stanton C (2002) Cheese delivering biocultures–Probiotic cheese. Aust J Dairy Technol 57:71–78

    Google Scholar 

  21. Shah NP, Wu C (1999) Aflatoxin B1 binding abilities of probiotic bacteria. Bioscience Microflora 18:43–48

    CAS  Google Scholar 

  22. Shah NP (2000a) Probiotic bacteria: Selective enumeration and survival in dairy foods. J Dairy Sci 83:1–14

    Article  Google Scholar 

  23. Shah NP (2000b) Some beneficial effects of probiotic bacteria. Biosci Microflora 19:99–106

    Google Scholar 

  24. Tait S, Amyes SG (1994) Trimethoprim-resistant dihydrofolate reductases in normal faecal flora isolated in India. Epidemiol Infect 113:247–258

    Article  PubMed  CAS  Google Scholar 

  25. Tallmeister ET, Lentsner KhP, Lentsmer AA (1977) Effect of lactic bacteria metabolic products on the transmission of R-plasmids in enterobacteria in vitro. Zh Mikrobiol Epidemiol Immunobiol 8:69–73

    PubMed  Google Scholar 

  26. Tannock GW (1997) Probiotic properties of lactic-acid bacteria: Plenty of scope for fundamental R & D. Trends Biotechnol 5:270–274

    Article  Google Scholar 

  27. Van der Waajj D (1989) The ecology of the human intestine and its consequences for overgrowth by pathogens such as Clostridium difficile. Annu Rev Microbiol 43:69–87

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moreno Bondi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabia, C., de Niederhäusern, S., Guerrieri, E. et al. Interference of Lactobacillus plantarum Strains in the In Vitro Conjugative Transfer of R-Plasmids. Curr Microbiol 58, 101–105 (2009). https://doi.org/10.1007/s00284-008-9279-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9279-5

Keywords

Navigation