Skip to main content
Log in

Improvement of Raw Sausage Fermentation by Stress-Conditioning of the Starter Organism Lactobacillus sakei

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Effective growth and high acidification activity during meat fermentation are key characteristics of starter lactobacilli to ensure hygienic safety and sensory quality of the product. In this study, we demonstrated that the performance of Lactobacillus sakei in sausage fermentation can be improved by preinoculation treatments with sublethal heat, cold, and salt stress. Sausages were produced and inoculated with stress-treated cells of L. sakei 23 K (pLPV111) and the isogenic mutant of the class III heat-shock repressor CtsR, which was previously shown to exhibit improved growth in fermenting sausages. The pH values of sausages fermented with stressed cells attained defined threshold values in a distinctly shorter time than those inoculated with unstressed cells. In particular, the cold-stressed cells (4°C) reduced the pH to 5.0 within approximately 40 hours compared with approximately 70 hours for untreated cells. This enhanced acidification activity of the cold-stressed cells was consistent with an increased growth rate. Growth studies in culture medium showed that stress-treated cells with improved performance did not exhibit this advantage when exposed to curing salt, one of the major stressors at the beginning of sausage fermentation. Preinoculation stress treatment is a promising way to improve the effectiveness of meat starter lactobacilli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Axelsson L, Holck A (1995) The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Bacteriol 177:2125–2137

    PubMed  CAS  Google Scholar 

  2. Buckenhüskes H (1993) Selection criteria for lactic acid bacteria to be used as starter cultures for various food commodities. FEMS Microbiol Rev 12:253–272

    Article  Google Scholar 

  3. Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2004) Relevant factors for the preparation of freeze-dried lactic acid bacteria. Int Dairy J 14:835–847

    CAS  Google Scholar 

  4. Chaillou S, Champomier-Verges MC, Cornet M, Crutz-Le Coq AM, Dudez AM, Martin V et al (2005) The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23 K. Nat Biotechnol 23:1527–1533

    Article  PubMed  CAS  Google Scholar 

  5. De Angelis M, Bini L, Pallini V, Cocconcelli PS, Gobbetti M (2001) The acid-stress response in Lactobacillus sanfranciscensis CB1. Microbiology 147:1863–1873

    PubMed  Google Scholar 

  6. Derre I, Rapoport G, Msadek T (1999) CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol Microbiol 31:117–131

    Article  PubMed  CAS  Google Scholar 

  7. Di Cagno R, De Angelis M, Corsetti A, Lavermicocca P, Arnault P, Tossut P et al (2003) Interactions between sourdough lactic acid bacteria and exogenous enzymes: Effects on the microbial kinetics of acidification and dough textural properties. Food Microbiology 20:67–75

    Article  CAS  Google Scholar 

  8. Di Cagno R, De Angelis M, Limitone A, Fox PF, Gobbetti M (2006) Response of Lactobacillus helveticus PR4 to heat stress during propagation in cheese whey with a gradient of decreasing temperatures. Appl Environ Microbiol 72:4503–4514

    Article  PubMed  CAS  Google Scholar 

  9. Drosinos EH, Mataragas M, Nasis P, Galiotou M, Metaxopoulos J (2005) Growth and bacteriocin production kinetics of Leuconostoc mesenteroides E131. J Appl Microbiol 99:1314–1323

    Article  PubMed  CAS  Google Scholar 

  10. Eijsink VG, Axelsson L (2005) Bacterial lessons in sausage making. Nat Biotechnol 23:1494–1495

    Article  PubMed  CAS  Google Scholar 

  11. Fonseca F, Beal C, Corrieu G (2000) Method of quantifying the loss of acidification activity of lactic acid starters during freezing and frozen storage. J Dairy Res 67:83–90

    Article  PubMed  CAS  Google Scholar 

  12. Frees D, Chastanet A, Qazi S, Sorensen K, Hill P, Msadek T et al (2004) Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol Microbiol 54:1445–1462

    Article  PubMed  CAS  Google Scholar 

  13. Gobbetti M, Lavermicocca P, Minervini F, de Angelis M, Corsetti A (2000) Arabinose fermentation by Lactobacillus plantarum in sourdough with added pentosans and alpha-L-arabinofuranosidase: A tool to increase the production of acetic acid. J Appl Microbiol 88:317–324

    Article  PubMed  CAS  Google Scholar 

  14. Gottesman S, Roche E, Zhou Y, Sauer RT (1998) The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12:1338–1347

    Article  PubMed  CAS  Google Scholar 

  15. Grandvalet C, Coucheney F, Beltramo C, Guzzo J (2005) CtsR is the master regulator of stress response gene expression in Oenococcus oeni. J Bacteriol 187:5614–5623

    Article  PubMed  CAS  Google Scholar 

  16. Guerzoni ME, Lanciotti R, Cocconcelli PS (2001) Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology 147:2255–2264

    PubMed  CAS  Google Scholar 

  17. Guzzo J, Jobin MP, Divies C (1998) Increase of sulfite tolerance in Oenococcus oeni by means of acidic adaptation. FEMS Microbiol Lett 160:43–47

    Article  CAS  Google Scholar 

  18. Hammes WP, Bantleon A, Min S (1990) Lactic acid bacteria in meat fermentation. FEMS Microbiol Rev 87:165–174

    Article  CAS  Google Scholar 

  19. Hammes WP, Hertel C (1998) New developments in meat starter cultures. Meat Science 49:125–138

    Article  Google Scholar 

  20. Hüfner E, Markieton T, Chaillou S, Crutz-Le Coq AM, Zagorec M, Hertel C (2007) Identification of Lactobacillus sakei genes induced during meat fermentation and their role in survival and growth. Appl Environ Microbiol 73:2522–2531

    Article  PubMed  CAS  Google Scholar 

  21. Jan G, Rouault A, Maubois J-L (2000) Acid stress susceptibility and acid adaptation of Propionibacterium freudenreichii subsp. shermanii. Lait 80:325–336

    Article  CAS  Google Scholar 

  22. Kang D-H, Fung DYC (2000) Stimulation of starter culture for further reduction of foodborne pathogens during salami fermentation. J Food Prot 63:1492–1495

    PubMed  CAS  Google Scholar 

  23. Karatzas KA, Wouters JA, Gahan CG, Hill C, Abee T, Bennik MH (2003) The CtsR regulator of Listeria monocytogenes contains a variant glycine repeat region that affects piezotolerance, stress resistance, motility and virulence. Mol Microbiol 49:1227–1238

    Article  PubMed  CAS  Google Scholar 

  24. Kruger E, Zuhlke D, Witt E, Ludwig H, Hecker M (2001) Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J 20:852–863

    Article  PubMed  CAS  Google Scholar 

  25. Leistner L (2000) Basic aspects of food preservation by hurdle technology. Int J Food Microbiol 55:181–186

    Article  PubMed  CAS  Google Scholar 

  26. Leistner L (1995) Stable and safe fermented sausages world-wide. In: Campbell-Platt G, Cook PE (eds) Fermented meats. Blackie Academic and Professional, London, UK, pp 160–175

    Google Scholar 

  27. Leroy F, De Vuyst L (2005) Simulation of the effect of sausage ingredients and technology on the functionality of the bacteriocin-producing Lactobacillus sakei CTC 494 strain. Int J Food Microbiol 100:141–152

    Article  PubMed  CAS  Google Scholar 

  28. Leroy F, Verluyten J, De Vuyst L (2006) Functional meat starter cultures for improved sausage fermentation. Int J Food Microbiol 106:270–285

    Article  PubMed  Google Scholar 

  29. Lindgren SE, Dobrogosz WJ (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Rev 7:149–163

    PubMed  CAS  Google Scholar 

  30. Lücke F-K (1998) Fermented sausages. In: Wood BJB (ed) Microbiology of fermented foods. Blackie Academic and Professional, London, UK, pp 441–483

    Google Scholar 

  31. Marceau A, Zagorec M, Chaillou S, Mera T, Champomier-Verges MC (2004) Evidence for involvement of at least six proteins in adaptation of Lactobacillus sakei to cold temperatures and addition of NaCl. Appl Environ Microbiol 70:7260–7268

    Article  PubMed  CAS  Google Scholar 

  32. Martin SE, Myers ER (1994) Staphylococcus aureus. In: Hui YH, Gorham JR, Murrell KD, Cliver DO (eds) Foodborne disease handbook. New York, NY: Marcel Dekker, pp 345–394

  33. Nair S, Poyart C, Beretti JL, Veiga-Fernandes H, Berche P, Trieu-Cuot P (2003) Role of the Streptococcus agalactiae ClpP serine protease in heat-induced stress defence and growth arrest. Microbiology 149:407–417

    Article  PubMed  CAS  Google Scholar 

  34. Noel P, Briand E, Dumont JP (1990) Role of nitrite in flavour development in uncooked cured meat products: Sensory assessment. Meat Science 28:1–8

    Article  CAS  Google Scholar 

  35. Papagianni M, Papamichael EM (2007) Modeling growth, substrate consumption and product formation of Penicillium nalgiovense grown on meat simulation medium in submerged batch culture. J Ind Microbiol Biotechnol 34:225–231

    Article  PubMed  CAS  Google Scholar 

  36. Piuri M, Sanchez-Rivas C, Ruzal SM (2005) Cell wall modifications during osmotic stress in Lactobacillus casei. J Appl Microbiol 98:84–95

    Article  PubMed  CAS  Google Scholar 

  37. Remize F, Augagneur Y, Guilloux-Benatier G, Guzzo J (2005) Effect of nitrogen limitation and nature of the feed upon Oenococcus oeni metabolism and extracellular protein production. J Appl Microbiol 98:652–661

    Article  PubMed  CAS  Google Scholar 

  38. Santivarangkna C, Kulozik U, Foerst P (2007) Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnol Prog 23:302–315

    Article  PubMed  CAS  Google Scholar 

  39. Scannell AG, Schwarz G, Hill C, Ross RP, Arendt EK (2001) Pre-inoculation enrichment procedure enhances the performance of bacteriocinogenic Lactococcus lactis meat starter culture. Int J Food Microbiol 64:151–159

    Article  Google Scholar 

  40. Schmidt G, Hertel C, Hammes WP (1999) Molecular characterisation of the dnaK operon of Lactobacillus sakei LTH681. Syst Appl Microbiol 22:321–328

    Google Scholar 

  41. Spano G, Massa S (2006) Environmental stress response in wine lactic acid bacteria: Beyond Bacillus subtilis. Crit Rev Microbiol 32:77–86

    Article  PubMed  CAS  Google Scholar 

  42. Torrestiana BS, Brito de la Fuente E, Lacroix C, Choplin L (1994) Modelling the acidifying activity profile of Lactobacillus bulgaricus cultures. Appl Microbiol Biotechnol 41:192–196

    Article  Google Scholar 

  43. van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 82:187–216

    Article  PubMed  Google Scholar 

  44. Varcamonti M, Arsenijevic S, Martirani L, Fusco D, Naclerio G, De Felice M (2006) Expression of the heat shock gene clpL of Streptococcus thermophilus is induced by both heat and cold shock. Microb Cell Fact 5:1–6

    Article  CAS  Google Scholar 

  45. Wouters JA, Kamphuis HH, Hugenholtz J, Kuipers OP, de Vos WM, Abee T (2000) Changes in glycolytic activity of Lactococcus lactis induced by low temperature. Appl Environ Microbiol 66:3686–3691

    Article  PubMed  CAS  Google Scholar 

  46. Zapparoli G (2004) Colony dimorphism associated with stress resistance in Oenococcus oeni VP01 cells during stationary growth phase. FEMS Microbiol Lett 239:261–265

    Article  PubMed  CAS  Google Scholar 

  47. Zwietering MH, Jongenburger I, Rombouts FM, van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Claudia Lis for expert technical assistance and are indebted to W. P. Hammes and H. J. Buckenhüskes for critical discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hertel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hüfner, E., Hertel, C. Improvement of Raw Sausage Fermentation by Stress-Conditioning of the Starter Organism Lactobacillus sakei . Curr Microbiol 57, 490–496 (2008). https://doi.org/10.1007/s00284-008-9274-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9274-x

Keywords