Skip to main content

Advertisement

Log in

Effect of Bacterial Interference on Biofilm Development by Legionella pneumophila

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In the ecology of Legionella pneumophila a crucial role may be played by its relationship with the natural flora; thus we investigated the interactions between Legionella and other aquatic bacteria, particularly within biofilms. Among 80 aquatic bacteria screened for the production of bacteriocin-like substances (BLSs), 66.2% of them were active against L. pneumophila. The possible effect of some of these aquatic bacteria on the development and stability of L. pneumophila biofilms was studied. Pseudomonas fluorescens, the best BLS producer, showed the greatest negative effect on biofilm formation and strongly enhanced the detachment of Legionella. Pseudomonas aeruginosa, Burkholderia cepacia, Pseudomonas putida, Aeromonas hydrophila, and Stenotrophomonas maltophilia, although producing BLSs at different levels, were less active in the biofilm experiments. Acinetobacter lwoffii did not produce any antagonistic compound and was the only one able to strongly enhance L. pneumophila biofilm. Our results highlight that BLS production may contribute to determining the fate of L. pneumophila within ecological niches. The interactions observed in this study are important features of L. pneumophila ecology, which knowledge may lead to more effective measures to control the persistance of the germ in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Public Health Association (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington, DC, pp 953–964

    Google Scholar 

  2. Atlas RM (1999) Legionella: from environmental habitats to disease, pathology, detection and control. Environ Microbiol 1:283–293

    Article  PubMed  CAS  Google Scholar 

  3. Borella P, Montagna MT, Romano-Spica V et al (2004) Legionella infection risk from domestic hot water. Emerg Infect Dis 10:457–464

    PubMed  Google Scholar 

  4. Borella P, Guerrieri E, Marchesi I, Bondi M, Messi P (2005) Water ecology of Legionella and protozoans: environmental and public health perspectives. Biotechn Annu Rev 11:355–380

    Article  CAS  Google Scholar 

  5. Brook I (1999) Bacterial interference. Crit Rev Microbiol 25:155–172

    Article  PubMed  CAS  Google Scholar 

  6. Emtiazi F, Shwartz T, Marten SM, Krolla-Sidenstein P, Obst U (2004) Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration. Water Res 38:1197–1206

    Article  PubMed  CAS  Google Scholar 

  7. Fields BS (1996) The molecular ecology of legionellae. Trends Microbiol 4:286–290

    Article  PubMed  CAS  Google Scholar 

  8. Guerrieri E, Bondi M, Ciancio C, Borella P, Messi P (2005) Micro and macromethod assays for the ecological study of Legionella pneumophila. FEMS Microbiol Lett 252:113–119

    Article  PubMed  CAS  Google Scholar 

  9. Guerrieri E, Bondi M, Borella P, Messi P (2007) Influence of aquatic microorganisms on Legionella pneumophila survival. New Microbiol 30:247–251

    PubMed  Google Scholar 

  10. Héchard Y, Ferraz S, Bruneteau E, Steinert M, Berjeaud JM (2005) Isolation and characterization of a Staphylococcus warneri strain producing an anti-Legionella peptide. FEMS Microbiol Lett 252:19–23

    Article  PubMed  Google Scholar 

  11. Heng BH, Goh KT, Ng DL, Ling AE (1997) Surveillance of legionellosis and Legionella bacteria in the built environment in Singapore. Ann Acad Med Singapore 26:557–565

    PubMed  CAS  Google Scholar 

  12. Kekessy DA, Piquet JD (1970) New method for detecting bacteriocin production. Appl Microbiol 20:282–283

    PubMed  CAS  Google Scholar 

  13. Knee M (2000) Selection of biocides for use in floral preservatives. Postharvest Biol Technol 18:227–234

    Article  CAS  Google Scholar 

  14. Koide M, Saito A, Kusano N, Higa F (1993) Detection of Legionella spp. in cooling tower water by the polymerase chain reaction method. Appl Environ Microbiol 59:1943–1946

    PubMed  CAS  Google Scholar 

  15. Mampel J, Spirig T, Weber SS, Haagensen JA, Molin S, Hilbi H (2006) Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions. Appl Environ Microbiol 72:2885–2895

    Article  PubMed  CAS  Google Scholar 

  16. Messi P, Guerrieri E, Bondi M (2002) Survival of Aeromonas hydrophila SB14 in an artificial mineral water microcosm. Water Res 36:3410–3415

    Article  PubMed  CAS  Google Scholar 

  17. Messi P, Guerrieri E, Bondi M (2003) Bacteriocin-like substance (BLS) production in Aeromonas hydrophila water isolates. FEMS Microbiol Lett 220:121–125

    Article  PubMed  CAS  Google Scholar 

  18. Messi P, Guerrieri E, Bondi M (2005) Antibiotic resistance and antibacterial activity in heterotrophic bacteria of mineral water origin. Sci Tot Environ 346:213–219

    Article  CAS  Google Scholar 

  19. Padilla C, Brevis P, Lobus O, Hubert E (1996) Bacteriocin activity of Pseudomonas sp. on enteropathogenetic bacteria in an artificial aquatic system. Lett Appl Microbiol 23:371–374

    Article  CAS  Google Scholar 

  20. Steinert M, Hentschel U, Hacker J (2002) Legionella pneumophila: an aquatic microbe goes astray. FEMS Microbiol Rev 26:149–162

    Article  PubMed  CAS  Google Scholar 

  21. Storey MV, Långmark J, Ashbolt NJ, Stenström TA (2004) The fate of legionellae within distribution pipe biofilms: measurement of their inactivation and detachment. Water Sci Technol 49:269–275

    PubMed  CAS  Google Scholar 

  22. Storey MV, Ashbolt NJ, Stenström TA (2004) Biofilms, thermophilic amoebae and Legionella pneumophila—a quantitative risk assessment for distributed water. Water Sci Technol 50:77–82

    PubMed  CAS  Google Scholar 

  23. Vervaeren H, Temmerman R, Devos L, Boon N, Verstraete W (2006) Introduction of a boost of Legionella pneumophila into a stagnant-water model by heat treatment. FEMS Microbiol Ecol 58:583–592

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Messi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrieri, E., Bondi, M., Sabia, C. et al. Effect of Bacterial Interference on Biofilm Development by Legionella pneumophila . Curr Microbiol 57, 532–536 (2008). https://doi.org/10.1007/s00284-008-9237-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9237-2

Keywords

Navigation