Skip to main content
Log in

Isolation and Characterization of Nonrhizobial Plant Growth Promoting Bacteria from Nodules of Kudzu (Pueraria thunbergiana) and Their Effect on Wheat Seedling Growth

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The leguminous vine Kudzu (Pueraria thunbergiana) is an introduction into the N. W. Himalayan region of India. Despite its value as a fodder and cover crop, little is known about the nature of the nodule microflora. In an attempt to study the nodule bacteria, we isolated and characterized three nonrhizobial plant growth promoting bacteria from surface sterilized nodules of Kudzu. Based on the sequencing of the 16 S r RNA gene, the isolates were designated as Bacillus thuringiensis KR-1, Enterobacter asburiae KR-3, and Serratia marcescens KR-4. Crystalline bodies were detected in the isolate KR-1, confirming its identity as B. thuringiensis. Under in vitro conditions, all three isolates were found to produce indole acetic acid. Other plant growth promotion attributes such as P solubilization, hydrogen cyanide production, and ammonia production varied among the isolates. All of the three isolates promoted growth and positively influenced nutrient uptake parameters of wheat seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andrews JH, Harris RF (2003) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    Article  Google Scholar 

  2. Araujo WL, Maccheroni WJr, Aguilar-Vildoso CI, et al. (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissue of citrus rootstocks. Can J Microbiol 47:229–236

    Article  PubMed  CAS  Google Scholar 

  3. Asis CA Jr, Adachi K (2003) Isolation of endophytic diazotroph Pantoea agglomerans and nondiazotroph Enterobacter asburiae from sweet potato stem in Japan. Lett Appl Microbiol 38:19–23

    Article  Google Scholar 

  4. Atlas RM (1995) The handbook of microbiological media for the examination of food. Boca Raton, FL: CRC Press, p 197

    Google Scholar 

  5. Bai Y, D’Aoust F, Smith DL, et al. (2002) Isolation of plant growth promoting Bacillus strains from soybean root nodules. Can J Microbiol 48: 230–238

    Article  PubMed  CAS  Google Scholar 

  6. Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  7. Baron, Peterson, Finegold (1994) Bailey and Scott’s diagnostic microbiology. 9th edn. St. Louis: Mosby-Year Book

  8. Basu PS, Ghosh AC (1998) Indole acetic acid and its metabolism in root nodules of a monocotyledonous tree Roystonea regia. Curr Microbiol 37:137–140

    Article  PubMed  CAS  Google Scholar 

  9. Blumer C, Hass D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177

    Article  PubMed  CAS  Google Scholar 

  10. Böhm M, Hurek T, Reinhold-Hurek B (2007) Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. Strain BH72. Mol Plant Microbe Interact doi: 10.1094/MPMI-20-5-0526

  11. Cole JR, Chai B, Farris RJ, et al. (2005) The Ribosomal Database Project (RDP-ΙΙ): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 1:33

    Google Scholar 

  12. Dashti N, Zhang F, Hynes R, et al. (1997) Application of plant growth-promoting rhizobacteria to soybean [Glycine max (L.) Merrill] increases protein and dry matter yield under short-season conditions. Plant Soil 188:33–41

    Article  CAS  Google Scholar 

  13. Dye DW (1962) The inadequacy of the usual determinative tests for identification of Xanthomonas spp. NZT Sci 5:393–416

    Google Scholar 

  14. Elliot LF, Lynch JM (1984) Pseudomonas as a factor in the growth of winter wheat (Triticum aestivum L.). Soil Biochem 16:69–71

    Article  Google Scholar 

  15. Forseth I, Innis A (2004) Kudzu (Pueraria montana): history, physiology and ecology combine to make a major ecosystem threat. Crit Rev Plant Sci 23:401–441

    Article  Google Scholar 

  16. Gordon AS, Weber RP (1951) Colorimetric estimation of indole acetic acid. Plant Physiol 26:192–195

    Article  PubMed  CAS  Google Scholar 

  17. Hoflich G, Weihe W, Kuhn G (1994) Plant growth stimulation with symbiotic and associative rhizosphere microorganisms. Experientia 50:897–905

    Article  Google Scholar 

  18. Jackson ML (1973) Soil chemical analysis. New Delhi: Prentice Hall of India Pvt Ltd., pp 25–214

    Google Scholar 

  19. Jensen HL (1954) The Azotobacteriacae. Bact Rev 18:195–214

    PubMed  CAS  Google Scholar 

  20. Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 46:473–480

    Article  Google Scholar 

  21. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  22. Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. New York: Marcel Dekker, pp 199–233

    Google Scholar 

  23. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetic analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  24. Lifshitz R, Kloepper JW, Kozlowski M, et al. (1987) Growth promotion of canola (rape-seed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can J Microbiol 8:102–106

    Google Scholar 

  25. McInroy JA, Kloepper JW (2004) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342

    Article  Google Scholar 

  26. Mehta S, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43:51–56

    Article  PubMed  CAS  Google Scholar 

  27. Mishaghi IJ, Donndelinger CR (1990) Endophytic bacteria in symptom-free cotton plants. Phytopathology 80:808–811

    Article  Google Scholar 

  28. Murphy JP, Riley JP (1962) A modified single solution method for the determination of the phosphate in natural waters. Anal Chem Acta 27:31–36

    Article  CAS  Google Scholar 

  29. Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney R (eds) Methods of soil analysis, part 2. Chemical and microbiological properties. Madison, WI: American Society of Agronomy, pp 403–430

    Google Scholar 

  30. Pidiyar V, Kaznowski A, Badri NN, et al. (2002) Aeromonas culicicola sp. nov., from the midgut of Culex uinquefasciatus. Int J Syst Evol Microbiol 52:1723–1728

    Article  PubMed  CAS  Google Scholar 

  31. Quadt-Hallmann A, Kloepper JW (1996) Immunological detection and localization of the cotton endophyte Enterobacter asburiae JM 22 in different plant species. Can J Microbiol 42:1144–1154

    Article  CAS  Google Scholar 

  32. Ramamurthy V, Vishwanathan R, Raghuchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against plant pests and diseases. Crop Prot 20:1–11

    Article  Google Scholar 

  33. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  34. Sambrook J, Fritsch ED, Maniatis T (1989) Molecular cloning: a laboratory manual. 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory

    Google Scholar 

  35. Singh RD, Kundu S, Bhatnagar VK, et al. (1992) Biomass harvest potential from Kudzu for mauring. Proc National Seminar on Organic Farming, Mahatma Phule Krishi Vidyapeeth, Pune, pp 91–93

    Google Scholar 

  36. Somasegaran P, Hoben HJ (1994) Identifying Rhizobia by immunoblot. In: Handbook for Rhizobia. New York: Springer Laboratory, pp 140–148

  37. Sturz AV, Christie BR, Matheson BG, et al. (1997) Biodiversity of endophytic bacteria that colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25:13–19

    Article  Google Scholar 

  38. Thompson JD, Gibson TJ, Plewniak F, et al. (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  39. Valverde A, Velazquez E, Fernandez-Santos F, et al. (2005) Phyllobacterium trifolii sp nov. nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989

    Article  PubMed  CAS  Google Scholar 

  40. Vazquez P, Holguin G, Puente ME, et al. (2004) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  Google Scholar 

  41. Vincent JM (1970) A manual for the practical study of nodule bacteria. Oxford: Blackwell Scientific Publications, pp 169

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Selvakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvakumar, G., Kundu, S., Gupta, A.D. et al. Isolation and Characterization of Nonrhizobial Plant Growth Promoting Bacteria from Nodules of Kudzu (Pueraria thunbergiana) and Their Effect on Wheat Seedling Growth. Curr Microbiol 56, 134–139 (2008). https://doi.org/10.1007/s00284-007-9062-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-007-9062-z

Keywords

Navigation