Skip to main content
Log in

Identification of Differentially Expressed Genes from Rhodothermus sp. XMH10 in Response to Low Temperature Using Random Arbitrarily Primed PCR

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Most research on the adaptation of thermophiles is focused on their adaptation to heat stress; only a few studies are focused on their cold adaptation. In this report, the thermophilic bacterium Rhodothermus sp. XMH10 was examined to gain a better understanding of gene expression in response to low temperature. Random arbitrarily primed polymerase chain reaction (RAP-PCR) was used to isolate and identify differentially expressed genes of bacteria grown at 45°C (lowest) compared to those at 75°C (optimal). Fifty-three differential cDNA fragments in total were isolated. Among them, 35 different cDNAs were analyzed by Northern blot, and 17 were confirmed to be differentially expressed at the transcriptional levels. These genes reflected a profile of differential expression and were involved in many physiological processes such as metabolism, cell membrane alterations, and regulatory adaptive response; most of them have never been previously reported. This study provides some new information on the adaptation of thermophilic bacteria to environmental temperature stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Berger F, Morellet N, Menu F, et al. (1996) Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globiformis SI55. J Bacteriol 178:2999–3007

    PubMed  CAS  Google Scholar 

  2. Bjornsdottir SH, Blondal T, Hreggvidsson GO, et al. (2006) Rhodothermus marinus: physiology and molecular biology. Extremophiles 1:1–16

    Article  CAS  Google Scholar 

  3. Bock AK, Kunow J, Glasemacher J, et al. (1996) Catalytic properties, molecular composition and sequence alignments of pyruvate: ferredoxin oxidoreductase from the methanogenic archaeon Methanosarcina barkeri (strain Fusaro). Eur J Biochem 237:35–44

    Article  PubMed  CAS  Google Scholar 

  4. Fislage R, Berceanu M, Humboldt Y, et al. (1997) Primer design for a prokaryotic differential display RT-PCR. Nucleic Acids Res 25:1830–1835

    Article  PubMed  CAS  Google Scholar 

  5. Georgieva DN, Stoeva S, Ivanova V, et al. (2000) Specificity of a neutral Zn-dependent proteinase from Thermoactinomyces sacchari toward the oxidized insulin B chain. Curr Microbiol 41:70–72

    Article  PubMed  CAS  Google Scholar 

  6. Kambampati R, Lauhon CT (2003)MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli. Biochemistry 42:1109–1117

    Article  PubMed  CAS  Google Scholar 

  7. Kevil CG, Walsh L, Laroux FS, et al. (1997) An improved, rapid northern protocol. Biochem Biophys Res Commun 238:277–279

    Article  PubMed  CAS  Google Scholar 

  8. Kletzin A, Adams MW (1996) Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima. J Bacteriol 178:248–257

    PubMed  CAS  Google Scholar 

  9. Kuwahara T, Yamashita A, Hirakawa H, et al. (2004) Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci USA 101:14,919–14,924

    Google Scholar 

  10. Liu S, Graham JE, Bigelow L, et al. (2002) Identification of Listeria monocytogenes genes expressed in response to growth at low temperature. Appl Environ Microbiol 68:1697–1705

    Article  PubMed  CAS  Google Scholar 

  11. Lu S (1999) Current protocols for molecular biology, 2nd ed. Peking Union Medical College Press, Beijing

    Google Scholar 

  12. Maguire BA, Wild DG (1997) The roles of proteins L28 and L33 in the assembly and function of Escherichia coli ribosomes in vivo. Mol Microbiol 23:237–245

    Article  PubMed  CAS  Google Scholar 

  13. Mello BA, Tu Y (2003) Perfect and near-perfect adaptation in a model of bacterial chemotaxis. Biophys J 84:2943–2956

    Article  PubMed  CAS  Google Scholar 

  14. Menon S, Stahl M, Kumar R, et al. (1999) Stereochemical course and steady state mechanism of the reaction catalyzed by the GDP-fucose synthetase from Escherichia coli. J Biol Chem 274:26,743–26,750

    Google Scholar 

  15. Nakano MM, Zuber P (1998) Anaerobic growth of a “strict aerobe” (Bacillus subtilis). Annu Rev Microbiol 52:165–190

    Article  PubMed  CAS  Google Scholar 

  16. Qing G, Ma LC, Khorchid A, et al. (2004) Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol 22:877–882

    Article  PubMed  CAS  Google Scholar 

  17. Rivera-marrero CA, Burroughs MA, Masse RA, et al. (1998) Identification of genes differentially expressed in Mycobacterium tuberculosis by differential display PCR. Microb Pathol 25:307–316

    Article  CAS  Google Scholar 

  18. Ruan L, Liu X, Yang H, et al. (2006) Isolation and identification of thermophilic microorganisms. J Xiamen Univ (Nat Sci) 45:276–279 (in Chinese)

    CAS  Google Scholar 

  19. Shepard BD, Gilmore MS (1999) Identification of aerobically and anaerobically induced genes in Enterococcus faecalis by random arbitrarily primed PCR. Appl Environ Microbiol 65:1470–1476

    PubMed  CAS  Google Scholar 

  20. Thieringer HA, Jones PG, Inouye M (1998) Cold shock and adaptation. BioEssays 20:49–57

    Article  PubMed  CAS  Google Scholar 

  21. Topanurak S, Sinchaikul S, Sookkheo B, et al. (2005) Functional proteomics and correlated signaling pathway of the thermophilic bacterium Bacillus stearothermophilus TLS33 under cold-shock stress. Proteomics 5:4456–4471

    Article  PubMed  CAS  Google Scholar 

  22. Uyttendaele M, Schukkink R, Van Gemen B, et al. (1996) Influence of bacterial age and pH of lysis buffer on type of nucleic acid isolated. J Microbiol Methods 26:133–138

    Article  CAS  Google Scholar 

  23. Walters DM, Rouviere PE (2005) High-density sampling differential display of prokaryotic mRNAs with RAP-PCR. Methods Mol Biol 317:85–98

    Google Scholar 

  24. Welsh J, Chada K, Dalal SS, et al. (1992) Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res 20:4965–4970

    Article  PubMed  CAS  Google Scholar 

  25. Yukti B, Saroj M, Bisaria VS (2002) Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Botechnol 22:375–407

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the China Ocean Mineral Resources R&D Association (DY105-02-04-05) and the Hi-Tech Research and Development Program of China (863 Program of China) (2004AA621010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruan, L., Luo, T., Li, F. et al. Identification of Differentially Expressed Genes from Rhodothermus sp. XMH10 in Response to Low Temperature Using Random Arbitrarily Primed PCR. Curr Microbiol 55, 543–548 (2007). https://doi.org/10.1007/s00284-007-9029-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-007-9029-0

Keywords

Navigation