Skip to main content
Log in

PilJ Localizes to Cell Poles and Is Required for Type IV Pilus Extension in Pseudomonas aeruginosa

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Twitching motility allows Pseudomonas aeruginosa to respond to stimuli by extending and retracting its type IV pili (TFP). PilJ is a protein necessary for this surface-associated twitching motility and bears high sequence identity with Escherichia coli methyl-accepting chemotaxis proteins (MCP). Here, we report that whereas wild-type P. aeruginosa PAO1 cells have extended pili at a single pole, pilJ mutant cells have shortened pili often at both poles despite normal levels of pilin accumulation, suggesting that PilJ is required for full TFP assembly/extension. Using yellow fluorescent protein fusions (pilJ-yfp), both plasmid born and in-frame chromosomal constructs, we determined that PilJ localizes to both poles of the cell. Overexpression of pilJ-yfp resulted in the protein accumulating between the poles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alley MR, Maddock JR, Shapiro L (1992) Polar localization of a bacterial chemoreceptor. Genes Dev 6:825–836

    Article  PubMed  CAS  Google Scholar 

  2. Blackhart BD, Zusman DR (1985) “Frizzy” genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. Proc Natl Acad Sci USA 82:8767–8770

    Article  PubMed  CAS  Google Scholar 

  3. Boyd JM (2000) Localization of the histidine kinase PilS to the poles of Pseudomonas aeruginosa and identification of a localization domain. Mol Microbiol 36:153–162

    Article  PubMed  CAS  Google Scholar 

  4. Bradley DE (1980) A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. Can J Microbiol 26:146–154

    Article  PubMed  CAS  Google Scholar 

  5. Chiang P, Habash M, Burrows LL (2005) Disparate subcellular localization patterns of Pseudomonas aeruginosa Type IV pilus ATPases involved in twitching motility. J Bacteriol 187:829–839

    Article  PubMed  CAS  Google Scholar 

  6. Croft L, Beatson SA, Whitchurch CB, et al. (2000) An interactive web-based Pseudomonas aeruginosa genome database: discovery of new genes, pathways and structures. Microbiology 146(Pt 10):2351–2364

    PubMed  CAS  Google Scholar 

  7. Darzins A (1994) Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus. Mol Microbiol 11:137–153

    Article  PubMed  CAS  Google Scholar 

  8. Darzins A (1993) The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, single-domain response regulator CheY. J Bacteriol 175:5934–5944

    PubMed  CAS  Google Scholar 

  9. Darzins A, Russell MA (1997) Molecular genetic analysis of type-4 pilus biogenesis and twitching motility using Pseudomonas aeruginosa as a model system: a review. Gene 192:109–115

    Article  PubMed  CAS  Google Scholar 

  10. Den Blaauwen T, Buddelmeijer N, Aarsman ME, et al. (1999) Timing of FtsZ assembly in Escherichia coli. J Bacteriol 181:5167–5175

    Google Scholar 

  11. Harrison DM, Skidmore J, Armitage JP, et al. (1999) Localization and environmental regulation of MCP-like proteins in Rhodobacter sphaeroides. Mol Microbiol 31:885–892

    Article  PubMed  CAS  Google Scholar 

  12. Henrichsen J (1983) Twitching motility. Annu Rev Microbiol 37:81–93

    Article  PubMed  CAS  Google Scholar 

  13. Huang B, Whitchurch CB, Mattick JS (2003) FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. J Bacteriol 185:7068–7076

    Article  PubMed  CAS  Google Scholar 

  14. Maddock JR, Shapiro L (1993) Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259:1717–1723

    Article  PubMed  CAS  Google Scholar 

  15. McMichael JC (1992) Bacterial differentiation within Moraxella bovis colonies growing at the interface of the agar medium with the Petri dish. J Gen Microbiol 138:2687–2695

    PubMed  CAS  Google Scholar 

  16. Merz AJ, So M, Sheetz MP (2000) Pilus retraction powers bacterial twitching motility. Nature 407:98–102

    Article  PubMed  CAS  Google Scholar 

  17. Mignot T, Merlie JP Jr, Zusman DR (2005) Regulated pole-to-pole oscillations of a bacterial gliding motility protein. Science 310:855–857

    Article  PubMed  CAS  Google Scholar 

  18. Schweizer HP (1992) Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker. Mol Microbiol 6:1195–1204

    Article  PubMed  CAS  Google Scholar 

  19. Skerker JM, Berg HC (2001) Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci USA 98:6901–6904

    Article  PubMed  CAS  Google Scholar 

  20. Smith AW, Iglewski BH (1989) Transformation of Pseudomonas aeruginosa by electroporation. Nucleic Acids Res 17:10509

    Google Scholar 

  21. Sogaard-Andersen L (2004) Cell polarity, intercellular signalling and morphogenetic cell movements in Myxococcus xanthus. Curr Opin Microbiol 7:587–593

    Article  PubMed  CAS  Google Scholar 

  22. Sourjik V, Berg HC (2000) Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. Mol Microbiol 37:740–751

    Article  PubMed  CAS  Google Scholar 

  23. Stover CK, Pham XQ, Erwin AL, et al. (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964

    Article  PubMed  CAS  Google Scholar 

  24. Sun H, Zusman DR, Shi W (2000) Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr Biol 10:1143–1146

    Article  PubMed  CAS  Google Scholar 

  25. Wadhams GH, Martin AC, Armitage JP (2000) Identification and localization of a methyl-accepting chemotaxis protein in Rhodobacter sphaeroides. Mol Microbiol 36:1222–1233

    Article  PubMed  CAS  Google Scholar 

  26. Wadhams GH, Warren AV, Martin AC, Armitage JP (2003) Targeting of two signal transduction pathways to different regions of the bacterial cell. Mol Microbiol 50:763–770

    Article  PubMed  CAS  Google Scholar 

  27. Ward MJ, Zusman DR (1997) Regulation of directed motility in Myxococcus xanthus. Mol Microbiol 24:885–893

    Article  PubMed  CAS  Google Scholar 

  28. Whitchurch CB, Leech AJ, Young MD, et al. (2004) Characterization of a complex chemosensory signal transduction system which controls twitching motility in Pseudomonas aeruginosa. Mol Microbiol 52:873–893

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ellen Quardokus for her technical assistance and valuable discussions. This work was supported by NIH grant No. GM61318-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayne B. Robinson.

Additional information

Paul DeLange and Tracy Collins contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeLange, P.A., Collins, T.L., Pierce, G.E. et al. PilJ Localizes to Cell Poles and Is Required for Type IV Pilus Extension in Pseudomonas aeruginosa . Curr Microbiol 55, 389–395 (2007). https://doi.org/10.1007/s00284-007-9008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-007-9008-5

Keywords

Navigation