Skip to main content
Log in

Isolation and Characterization of Xylitol-Producing Yeasts from the Gut of Colleopteran Insects

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A total of 35 yeasts were isolated from the gut of beetles collected from Hyderabad city, India. Twenty of these yeasts utilized xylose as a sole carbon source but only 12 of these converted xylose to xylitol. The ability to convert xylose to xylitol varied among the isolates and ranged from 0.12 to 0.58 g/g xylose. Based on the phenotypic characteristics and phylogenetic analysis of the D1/D2 domain sequence of 26S rRNA gene, these isolates were identified as members of Pichia, Candida, Issatchenkia, and Clavispora. Strain YS 54 (CBS 10446), which was phylogenetically similar to Pichia caribbica and which formed hat-shaped ascospore characteristics of the genus Pichia, was the best xylitol producer (0.58 g xylitol/g xylose). YS 54 was also capable of producing xylitol from sugarcane bagasse hydrolysate and the efficiency of conversion was 0.32 g xylitol/g xylose after 20 cycles of adaptation in medium containing sugarcane bagasse hydrolysate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Peldyak K, Makinen KK (2002) Xylitol for caries prevention. J Dental Hygiene 76:276–285

    Google Scholar 

  2. Gare F (2002) The sweet miracle of xylitol diet. In: Mariadason C (ed) The sweet miracle of xylitol, Basic Health Publications, Laguna Beach, pp 45–66

    Google Scholar 

  3. Pepper T, Olinger PM (1988) Xylitol in sugar-free confections. Food Technol 10:98–106

    Google Scholar 

  4. Yoshitake J, Obiwa H, Shimamurs M (1971) Production of polyalcohol by Corynebacterium sp. I. Production of pentitol from aldopentose. Agric Biol Chem 35:905–911

    CAS  Google Scholar 

  5. Yoshitake J, Shimamura M, Ishizaki H, Irie Y (1976) Xylitol production by Enterobacter liquefaciens. Agric Biol Chem 40:1493–1503

    CAS  Google Scholar 

  6. Dahiya JS (1991) Xylitol production by Petromyces albertensis grown on medium containing d-xylose. Can J Microbiol 37:14–18

    Article  CAS  Google Scholar 

  7. Bernard AP, Stephanus GK, James CP (1989) Fermentation of d-xylose by the yeasts Candida shehatae and Pichia stipitis. Process Biochem 24:21–31

    Google Scholar 

  8. Jeffries TW (1983) Utilization of xylose by bacteria, yeasts and fungi. Adv Biochem Eng Biotechnol 27:1–32

    PubMed  CAS  Google Scholar 

  9. Sreenivas Rao R, Prakasham RS, Prasad K, Rajesham S, Sharma PN, Rao LV (2004) Xylitol production by Candida sp.: parameter optimization using Taguchi approach. Process Biochem 39:951–956

    Article  CAS  Google Scholar 

  10. Leathers TD, Gupta SC (1997) Xylitol and riboflavin accumulation in xylose-grown cultures of Pichia guilliermondii. Appl Microbiol Biotechnol 47:58–61

    Article  CAS  Google Scholar 

  11. Sampaio FC, Mantovani HC, Passos FJV, Moraes CA, Converti A, Passos FM (2005) Bioconversion of d-xylose to xylitol by Debaryomyces hansenii UFV-170: product formation versus growth. Process Biochem 40:3600–3606

    Article  CAS  Google Scholar 

  12. Sreenivas Rao R, Jyothi CP, Prakasham RS, Rao CS, Sarma PN, Rao LV (2006) Xylitol strain improvement of Candida tropicalis for the production of xylitol: Biochemical and physiological characterization of wild and mutant strain CT-OMV5. J Microbiol 44:113–120

    Google Scholar 

  13. Sreenivas Rao R, Jyothi CP, Prakasham RS, Rao CS, Sarma PN, Rao LV (2006) Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresource Technol 97:1974–1978

    Article  CAS  Google Scholar 

  14. Saha BC, Bothast RJ (1999) Pretreatment and enzymatic saccharification of corn fiber. Appl Biochem Biotechnol 76:65–77

    Article  PubMed  CAS  Google Scholar 

  15. Nguyen NH, Suh SO, Marshall CJ, Blackwell M (2006) Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. Mycology Res 110:1232–1241

    Article  Google Scholar 

  16. Suh SO, McHugh JV, Pollock DD, Blackwell M (2005) The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res 109:261–265

    Article  PubMed  CAS  Google Scholar 

  17. Suh SO, Marshall CJ, McHugh JV, Blackwell M (2003) Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Mol Ecol 12:3137–3146

    Article  PubMed  Google Scholar 

  18. Suh SO, Blackwell M (2004) Three new beetle-associated yeast species in the Pichia guilliermondii clade. FEMS Yeast Res 4:87–95

    Article  CAS  Google Scholar 

  19. Bhadra B, Sreenivas Rao R, Naveen KN, Chaturvedi P, Sarkar PK, Shivaji S (2007) Pichia cecembensis sp. nov. isolated from a papaya fruit (Carica papaya L., Caricaceae). FEMS Yeast Res 7:579–584

    Article  PubMed  CAS  Google Scholar 

  20. Makimura K, Murayama SY, Yamaguchi H (1994) Detection of a wide range of medically important fungi by the polymerase chain reaction. J Med Microbiol 40:358–364

    Article  PubMed  CAS  Google Scholar 

  21. Kurtzman CP, Robnett CJ (1997) Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′ end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol 35:1216–1223

    PubMed  CAS  Google Scholar 

  22. Sreenivas Rao R, Bhadra B, Kumar NN, Shivaji S. (2007) Candida hyderabadensis sp. nov., a novel ascomycetous yeast isolated from wine grapes. FEMS Yeast Res 7:489–493

    Article  CAS  Google Scholar 

  23. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  24. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  25. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for Molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  26. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  27. Felsenstein J (1985) Confidence limits on phylogenies: an approach using bootstrap. Evolution 39: 783–791

    Article  Google Scholar 

  28. Yarrow D (1998) Methods for the isolation, maintenance and identification of yeasts. In CP Kurtzman, JW Fell (ed) The yeasts, a taxonomic study, 4th ed. Elsevier, Amsterdam

  29. Nakase T, Suzuki M (1996) Bullera megalospora, a new species of yeast forming large ballistospores isolated from dead leaves of Oryza sativa, Miscanthus sinensis, and Sasa sp. in Japan. J Gen Appl Microbiol 32:225–240

    Google Scholar 

  30. Lachance MA, Daniel HM, Meyer W, Prasad GS, Gautam SP, Boundy-Mills K (2003) The D1/D2 domain of the large-subunit rDNA of the yeast species Clavispora lusitaniae is unusually polymorphic. FEMS Yeast Res 4:253–258

    Article  PubMed  CAS  Google Scholar 

  31. Vandeska E, Amartey S, Kuzmanova S, Jeffries TW (1995) Effects of environmental conditions on production ofxylitol by Candida boidinii. World J Microbiol Biotechnol 11:213–218

    Article  CAS  Google Scholar 

  32. Parajo JC, Dominguez H, Dominguez JM (1996) Production of xylitol from concentrated wood hydrolysates by Debaryomyces hansenii: effect of the initial cell concentration. Biotech Lett 18:593–598

    Article  CAS  Google Scholar 

  33. Kim JH, KC Han YH Koh VW Ryu JH Seo (2002) Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. J Ind Microbiol Biotechnol 29:16–19

    Article  PubMed  CAS  Google Scholar 

  34. Preziosi-Belloy, Nolleau V, Navarro JM (2000) Xylitol production from aspen wood hemicellulose hydrolysate by Candida guilliermondii. Biotech Lett 22:239–243

    Article  CAS  Google Scholar 

  35. Lu J, Larry B, Gong CS, Tsao GT (1995) Effect of nitrogen sources on xylitol production from d-xylose by Candida sp. L-102. Biotechnol Lett 17:167–170

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The yeast strains were isolated as part of a project funded by the Council of Scientific and Industrial Research, New Delhi, India, to S.S. to characterize methylotrophic yeasts from the environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shivaji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, R.S., Bhadra, B. & Shivaji, S. Isolation and Characterization of Xylitol-Producing Yeasts from the Gut of Colleopteran Insects. Curr Microbiol 55, 441–446 (2007). https://doi.org/10.1007/s00284-007-9005-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-007-9005-8

Keywords

Navigation