Skip to main content

Advertisement

Log in

VanA-Type Vancomycin-Resistant Enterococci in Equine and Swine Rectal Swabs and in Human Clinical Samples

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Vancomycin-resistant enterococci (VRE) in healthy people and in food-producing animals seems to be quite common in Europe. The existence of this community reservoir of VRE has been associated with the massive use of avoparcin in animal husbandry. Eight years after the avoparcin ban in Europe, we investigated the incidence of VanA enterococci, their resistance patterns, and the mobility of their glycopeptide-resistance determinants in a sampling of animal rectal swabs and clinical specimens. A total of 259 enterococci isolated from equine, swine, and clinical samples were subcultured on KF-streptococcus agar (Difco Laboratories, Detroit, MI) supplemented with vancomycin and teicoplanin; 7 (6.7%), 10 (16%), and 8 (8.6%) respectively were found to be glycopeptides resistant (VanA phenotype). Slight differences in antimicrobial resistance patterns resulted among VRE recovered from the different sources.

Polymerase chain reaction amplification demonstrated the presence of the vanA gene cluster and its extrachromosomal location in VRE plasmid DNA. VanA resistance was transferred in 7 out of 25 mating experiments, 4 with clinical, 2 with swine, and only 1 with equine donors. The conjugative plasmids of animal strains showed a high homology in the restriction profiles, unlike plasmids of clinical microrganisms. Our observations confirmed the possible horizontal transfer of VanA plasmids across different strains and, consequently, the diffusion of the vancomycin-resistance determinants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aarestrup FM, Seyfarth AM, Emborg HD, Pedersen K, Hendriksen RS, Bager F (2001) Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob Agents Chemother 45:2054–2059

    Article  PubMed  CAS  Google Scholar 

  2. Bates J, Jordens JZ, Griffiths DT (1994) Farm animals as a putative reservoir for vancomycin-resistant enterococcal infection in man. J Antimicrob Chemother 34:507–516

    Article  PubMed  CAS  Google Scholar 

  3. Busani L, Del Grosso M, Paladini C, Graziani C, Pantosti A, Biavasco F, Caprioli A (2004) Antimicrobial susceptibility of vancomycin-susceptible and resistant enterococci isolated in Italy from raw meat products, farm animals, and human infections. Int J Food Microbiol 97:17–22

    Article  PubMed  CAS  Google Scholar 

  4. Chang S, Sievert DM, Hageman JC, Boulton ML, Tenover FC, Pouch Downes F, et al. (2003) Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med 348:1342–1347

    Article  PubMed  Google Scholar 

  5. Descheemaeker PR, Chapelle S, Devriese LA, Butaye P, Vandamme P, Goossens H (1999) Comparison of glycopeptide-resistant Enterococcus faecium isolates and glycopeptide resistance genes of human and animal origins. Antimicrob Agents Chemother 43:2032–2037

    PubMed  CAS  Google Scholar 

  6. Devriese LA, Ieven M, Goossens H, Vandamme P, Pot B, Hommez J, Haesebrouck F (1996) Presence of vancomycin-resistant enterococci in farm and pet animals. Antimicrob Agents Chemother 40:2285–2287

    PubMed  CAS  Google Scholar 

  7. Dutka-Malen S, Evers S, Courvalin P (1995) Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol 33:24–27

    PubMed  CAS  Google Scholar 

  8. Franz CMAP, Holzapfel WH, Stiles ME (1999) Enterococci at the crossroads of food safety? Int J Food Microbiol 47:1–24

    Article  CAS  Google Scholar 

  9. Garcia-Migura L, Pleydell E, Barnes S, Davies RH, Liebana E (2005) Characterization of vancomycin-resistant Enterococcus faecium isolates from broiler poultry and pig farms in England and Wales. J Clin Microbiol 43:3283–3289

    Article  PubMed  CAS  Google Scholar 

  10. González-Zorn B, Courvalin P (2003) vanA-mediated high level glycopeptide resistance in MRSA. Lancet Infect Dis 3:67–68

    Article  PubMed  Google Scholar 

  11. Heuer OE, Pedersen K, Jensen LB, Madsen M, Olsen JE (2002) Persistence of vancomycin-resistant enterococci (VRE) in broiler houses after the avoparcin ban. Microb Drug Resist 8:355–361

    Article  PubMed  CAS  Google Scholar 

  12. Jacob AE, Hobbs SJ (1974) Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis var. zymogenes. J Bacteriol 117:360–372

    PubMed  CAS  Google Scholar 

  13. Kirk M, Hill RLR, Casewell MW, Beighton D (1997) Isolation of vancomycin-resistant enterococci from supermarket poultry. Adv Exp Med Biol 418:289–291

    PubMed  CAS  Google Scholar 

  14. Leclercq R, Derlot E, Duval J, Couvalin P (1988) Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 319:157–161

    Article  PubMed  CAS  Google Scholar 

  15. Leclercq R, Derlot E, Weber M, Duval J, Courvalin P (1989) Transferable vancomycin and teicoplanin resistance in Enterococcus faecium. Antimicrob Agents Chemother 33:10–15

    PubMed  CAS  Google Scholar 

  16. Macrina FL, Kopecko DJ, Jones KR, Ayers DJ, Mc Cowen SM (1978) A multiple plasmid-containing Escherichia coli strain: convenient source of size reference plasmid molecules. Plasmid 1:417–420

    Article  PubMed  CAS  Google Scholar 

  17. Messi P, Guerrieri E, de Niederhäusern S, Sabia C, Bondi M (2006) Vancomycin-resistant enterococci (VRE) in meat and environmental samples. Int J Food Microbiol 107:218–222

    Article  PubMed  CAS  Google Scholar 

  18. NCCLS (2000) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard M7-A5, 5th ed. National Committee for Clinical Laboratory Standards, Wayne, PA

    Google Scholar 

  19. NCCLS (2002) Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; approved standard, 2nd ed. NCCLS Document M31-A2. National Committee for Clinical Laboratory Standards, Wayne, PA

    Google Scholar 

  20. Noble WC, Virani Z, Cree RGA (1992) Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol Lett 93:195–198

    Article  Google Scholar 

  21. O’Sullivan DJ, Klaenhammer R (1993) Rapid Mini-Prep isolation of high-quality plasmid DNA from Lactococcus and Lactobacillus spp. Appl Environ Microbiol 59:2730–2733

    PubMed  CAS  Google Scholar 

  22. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  23. Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  PubMed  CAS  Google Scholar 

  24. Schwarz S, Kehrenberg C, Walsh TR (2001) Use of antimicrobial agents in veterinary medicine and food animal production. Int J Antimicrob Agents 17:431–437

    Article  PubMed  CAS  Google Scholar 

  25. Stobbering E, van den Bogaard A, London N, Driessen C, Top J, Willems R (1999) Enterococci with glycopeptide resistance in turkeys, turkey farmers, turkey slaughterers, and (sub)urban residents in the South of the Netherlands: evidence for transmission of vancomycin resistance from animals to humans? Antimicrob Agents Chemother 43:2215–2221

    Google Scholar 

  26. Sundsjord A, Simonsen GS, Courvalin P (2001) Human infections caused by glycopeptide-resistant Enterococcus spp.: are they a zoonosis? Clin Microbiol Infect 4:16–33

    Article  Google Scholar 

  27. van den Bogaard AE, Stobbering EE (2000) Epidemiology of resistance to antibiotics. Links between animals and humans. Int J Antimicrob Agents 14:327–335

    Article  PubMed  Google Scholar 

  28. Witte W (2001) Selective pressure by antibiotic use in livestock. Int. J Antimicrob Agents 16:19–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moreno Bondi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Niederhäusern, S., Sabia, C., Messi, P. et al. VanA-Type Vancomycin-Resistant Enterococci in Equine and Swine Rectal Swabs and in Human Clinical Samples. Curr Microbiol 55, 240–246 (2007). https://doi.org/10.1007/s00284-007-0115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-007-0115-0

Keywords