Skip to main content
Log in

Identification Homologous Recombination Function from Haloarchaea Plasmid pHH205

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Homologous recombination (HR) was found to be so frequent in haloarchaea that its significance in evolution and diversity of this clade of life might have been underestimated. However, so far there has been no report on recombination function carried on plasmid. Here we report that a 4.8-kb SnaBI-PvuII digested segment from pHH205 might carry such a function. Four constructed plasmids: pUN, pUN-205, pUM and pUM-205, with pUN and pUN205 containing NovR gene, pUM and pUM-205 carrying MevR gene, were used to transform Haloferax volcanii DS52 (radA). The results showed that only pUN-205 and pUM-205 containing the 4.8-kb SnaBI-PvuII digested segment from pHH205 were able to shift NovR and MevR gene into the chromosome of Haloferax volcanii DS52 through HR, whereas those in pUN and pUM could not, which indicated that the segment from pHH205 does contain a recombination function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Literature Cited

  1. Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G, Deutsch EW, Shannon P, et al. (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14:2221–2234

    Article  PubMed  CAS  Google Scholar 

  2. Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D (2006) The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7:169

    Article  PubMed  Google Scholar 

  3. Bolt EL, Guy CP (2003) Homologous recombination in Archaea: new Holliday junction helicases. Biochem Soc Trans 31:703–705

    Article  PubMed  CAS  Google Scholar 

  4. Charlebois RL, Lam WL, Cline SW, Doolittle WF (1987) Characterization of pHV2 from Halobacterium volcanii and its use in demonstrating transformation of an archaebacterium. Proc Natl Acad Sci USA 84:8530–8534

    Article  PubMed  CAS  Google Scholar 

  5. Cline SW, Lam WL, Charlebois RL, Schalkwyk LC, Doolittle WF (1989) Transformation methods for halophilic archaeabacteria. Can J Microbiol 35:148–152

    PubMed  CAS  Google Scholar 

  6. Cox MM (2001) Recombinational DNA repair of damaged replication fork in Escherichia coli: questions. Annu Rev Genet 35:53–82

    Article  PubMed  CAS  Google Scholar 

  7. Gerard E, Jolivet E, Prieur D, Forterre P (2001) DNA protection mechanisms are not involved in the radioresistance of the hyperthermophilic archaea Pyrococcus abyssi and P. furiosus. Mol Genet Genomics 266:72–78

    Article  PubMed  CAS  Google Scholar 

  8. Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res Camb 5:282–304

    Google Scholar 

  9. Holmes ML, Dyall-Smith ML (1990) A plasmid vector with a selectable marker for halophilic archaebacteria. J Bacteriol 172:756–761

    PubMed  CAS  Google Scholar 

  10. Holmes ML, Dyall-Smith ML (1991) Mutations in DNA gyrase result in novobiocin resistance in halophilic archaebacteria. J Bacteriol 173:642–648

    PubMed  CAS  Google Scholar 

  11. Holmes ML, Nuttall ST, Dyall-Smith ML (1991) Construction and use of halobacterial shuttle vectors and further studies on haloferax DNA gyrase. J Bacteriol 173:3807–3813

    PubMed  CAS  Google Scholar 

  12. Komori K, Ishino Y (2001) Replication protein A in Pyrococcus furiosus is involved in homologous DNA recombination. J Biol Chem 276:25654–25660

    Article  PubMed  CAS  Google Scholar 

  13. Lam WL, Doolittle WF (1989) Shuttle vectors for the archaebacterium Halobacterium volcanii. Proc Natl Acad Sci USA 86:478–5482

    Google Scholar 

  14. Lam WL, Doolittle WF (1992) Mevinolin-resistant mutations identify a promoter and the gene for a eukaryote-like 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the archaebacterium haloferax volcanii. J Biol Chem 267:5829–5834

    PubMed  CAS  Google Scholar 

  15. Lusetti SL, Cox MM (2002) The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu Rev Biochem 71:71–100

    Article  PubMed  CAS  Google Scholar 

  16. Meselson MS, Radding CM (1975) A general model for genetic recombination. Proc Natl Acad Sci USA 72:358–361

    Article  PubMed  CAS  Google Scholar 

  17. Papke RT, Koenig JE, Rodíguez-Valera F, Doolittle WF (2004) Frequent recombination in a saltern population of Halorubrum. Science 306:1928–1929

    PubMed  CAS  Google Scholar 

  18. Pastink A, Eeken JC, Lohman PH (2001) Genomic integrity and the repair of double-strand DNA breaks. Mutat Res 480–481: 37–50

    PubMed  Google Scholar 

  19. Rashid N, Morikawa M, Imanaka T (1997) Characterization of a RecA/RAD51 homologue from the hyperthermophilic archaeon Pyrococcus sp. KOD1. Nucleic Acids Res 25:719–726

    Article  PubMed  CAS  Google Scholar 

  20. Reich CI, McNeil LK, Brace JL, Brucker JK, Olsen GJ (2001) Archaeal RecA homologues: different response to DNA-damaging agents in mesophilic and thermophilic Archaea Extremophiles 5:265–275

    Article  CAS  Google Scholar 

  21. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press

    Google Scholar 

  22. Sandler SJ, Hugenholta P, Schleper C, DeLong EF, Pace NR, Clark AJ (1999) Diversity of radA genes from cultured and uncultured archaea: comparative analysis of putative RadA proteins and their use as a phylogenetic marker. J Bacteriol 181:907–915

    PubMed  CAS  Google Scholar 

  23. Sandler SJ, Satin LH, Samra HS, Clark AJ (1996) recA-like genes from three archaean species with putative protein products similar to Rad51 and Dmc1 proteins of the yeast Saccharomyces cerevisiae. Nucleic Acids Res 24:2125–2132

    Article  PubMed  CAS  Google Scholar 

  24. Seitz EM, Brockman JP, Sandler SJ, Clark AJ, Kowalczykowski SC (1998) RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange. Genes Dev 12:1248–1253

    PubMed  CAS  Google Scholar 

  25. Shen P, Chen YJ (1994) Plasmid from Halobacterium halobium and its restriction map. Chinese J Genet 21:409–416

    CAS  Google Scholar 

  26. Shibata T (2001) Functions of homologous DNA recombination. RIKEN Rev 41:21–23

    Google Scholar 

  27. Spies M, Kil Y, Masui R, Kato R, Kujo C, Ohshima T, Kuramitsu S, Lanzov V (2000) The RadA protein from a hyperthermophilic archaeon Pyrobaculum islandicum is a DNA-dependent ATPase that exhibits two disparate catalytic modes, with a transition temperature at 75°C. Eur J Biochem 267:1125–1137

    Article  PubMed  CAS  Google Scholar 

  28. White CI, Haber JE (1990) Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J 9:663–673

    PubMed  CAS  Google Scholar 

  29. Woods WG, Dyall-Smith ML (1997) Construction and analysis of recombination-deficient (radA) mutant of Haloferax volcanii. Mol Microbiol 23:791–797

    Article  PubMed  CAS  Google Scholar 

  30. Ye XC, Ou JH, Ni LN, Shi WL, Shen P (2003) Characterization of a novel plasmid from extremely halophilic archaea: nucleotide sequence and function analysis. FEMS Microbiol Lett 221:53–57

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, Y., Chen, D., Sun, D. et al. Identification Homologous Recombination Function from Haloarchaea Plasmid pHH205. Curr Microbiol 55, 76–80 (2007). https://doi.org/10.1007/s00284-007-0043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-007-0043-z

Keywords

Navigation