Skip to main content
Log in

Cloning and Identification of lpsH, a Novel Gene Playing a Fundamental Role in Symbiotic Nitrogen Fixation of Mesorhizobium huakuii

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Mesorhizobium huakuii 7653R forms a symbiotic relationship with Astragalus sinicus to produce nitrogen-fixing root nodules under nitrogen-limiting conditions. By screening its transposon-inserted mutant library, a mutation in the lpsH gene was found to form pseudonodules on A. sinicus. Its effect was further confirmed by double-crossover mutant HK242. DNA sequence analysis revealed that the lpsH gene encodes a deduced protein of 397 amino acids with a predicted molecular mass of 43.6 kD. LpsH contains a putative signal peptide, 11 transmembrane helices, and an O-antigen polymerase domain, which locates on the periplasmic membrane and is necessary to lipopolysaccharide synthesis. Plant studies showed that the lpsH gene mutant formed ineffective nodules, and this symbiotic phenotype was linked to abnormal nodule development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Literature Cited

  1. Cheng GJ, Li YG, Zhou JC (2006) Cloning and identification of opa22, a new gene involved in nodule formation by Mesorhizobium huakuii. FEMS Microbiol Lett 257:152–157

    Article  PubMed  CAS  Google Scholar 

  2. Chuang DY, Kyeremeh AG, Takahara Y, Ehara Y, Kikumoto T (1999) Identification cloning an Erwinia carotovora subsp. Carotovora bacteriocin regulator gene by insertional mutagenesis. J Bacteriol 181:1953–1957

    PubMed  CAS  Google Scholar 

  3. Daniels C, Vindurampulle C, Morona R (1998) Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/ Wzy). Mol Microbiol 28:1211–1222

    Article  PubMed  CAS  Google Scholar 

  4. Fraysse N, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. Eur J Biochem 270:1365–1380

    Article  PubMed  CAS  Google Scholar 

  5. Hooykaas PJJ, Klapwijk PM, Nuti MP, Schilperoort RA, Rörsch A (1977) Transfer of the Agrobacterium tumefaciens TI plasmid to avirulent agrobacteria and to rhizobia ex planta. J Gen Microbiol 98:477–484

    Google Scholar 

  6. Hynes MF, Quandt J, O’Connell MP, Puhler A (1989) Direct selection for curing and deletion of Rhizobium plasmids using transposons carrying the Bacillus subtilis sacB gene. Gene 78:111–120

    Article  PubMed  CAS  Google Scholar 

  7. Kaneko T, Nakamura Y, Sato S, et al. (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    Article  PubMed  CAS  Google Scholar 

  8. Keating DH, Willits MG, Long SR (2002) A Sinorhizobium meliloti lipopolysaccharide mutant altered in cell surface sulfation. J Bacteriol 184:6681–6689

    Article  PubMed  CAS  Google Scholar 

  9. Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: Automatable amplification and sequencing insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681

    Article  PubMed  CAS  Google Scholar 

  10. Long SR (1989) Rhizobium-legume nodulation: life together in the underground. Cell 56, 203–214

    Article  PubMed  CAS  Google Scholar 

  11. Noel KD, Box JM, Bonne VJ (2004) 2-O-methylation of fucosyl residues of a rhizobial lipopolysaccharide is increased in response to host exudate and is eliminated in a symbiotically defective mutant. Appl Environ Microbiol 70:1537–1544

    Article  PubMed  CAS  Google Scholar 

  12. Nutman PS (1970) The modified Fahraeus slide technique, appendix III. In: Vincent JM (ed) A manual for the practical study of root-nodule bacteria. Oxford, UK, Blackwell Scientific, pp 144–145

    Google Scholar 

  13. Pellock BJ, Cheng HP, Walker GC (2000) Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol 182:4310–4318

    Article  PubMed  CAS  Google Scholar 

  14. Quandt J, Hynes MF (1993) Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 127:15–21

    Article  PubMed  CAS  Google Scholar 

  15. Rae AL, Bonfante-Fasolo P, Brewin NJ (1992) Structure and growth of infection threads in the legume symbiosis with Rhizobium leguminosarum. Plant J 2:385–395

    Article  Google Scholar 

  16. Shiping D, Simmers ML, Kahn ML, McDermott TR (1998) Cloning and characterization of a Rhizobium meliloti nonspecific acid phosphatase. Arch Microbiol 170:18–26

    Article  Google Scholar 

  17. Simon R (1984) High frequency mobilization of gram negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet 196:413–420

    Article  PubMed  CAS  Google Scholar 

  18. Vedam V, Haynes JG, Kannenberg EL, Carlson RW, Sherrier DJ (2004) A Rhizobium leguminosarum lipopolysaccharide lipid A mutant induces nitrogen-fixing nodules with delayed and defective bacteroid formation. Mol Plant Microbe 17:283–291

    CAS  Google Scholar 

  19. Yan H, Xiao G, Zhang J, Hu Y, Yuan F, Cole DK, et al. (2004) SARS coronavirus induces apoptosis in Vero E6 cells. J Med Virol 73:323–331

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30270052); The Ministry of Science and Technology of China Microbial Resources (Project 2005DKA21208-6); and Hubei Technologies (R & D Programme 2006AA201B33). We are grateful to Hu Yuanyang for supporting the microscopic studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junchu Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, G., Li, Y., Xie, B. et al. Cloning and Identification of lpsH, a Novel Gene Playing a Fundamental Role in Symbiotic Nitrogen Fixation of Mesorhizobium huakuii . Curr Microbiol 54, 371–375 (2007). https://doi.org/10.1007/s00284-006-0471-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-006-0471-1

Keywords

Navigation