Skip to main content

Advertisement

Log in

Ethanol Effects on Pseudomonas aeruginosa Lectin, Protease, Hemolysin, Pyocyanin, Autoinducer, and Phosphatase Levels Depending on Medium Composition and Choline Presence

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is a serious pathogen involved in nosocomial infections. Its pathogenicity is owed to rich production of virulence factors (VIFs) regulated by several complex hierarchical signal systems depending on environmental conditions, medium composition, and the presence of certain active compounds in it. Choline (Ch), which exists in patient tissues, and ethanol (Et), whose consumption aggravates infections, were reported to augment this microbe virulence. The goal of the present study was to show the effect of Et addition to P. aeruginosa cultures in two media (minimal culture medium [MM] and Eagon-Grelet medium [EGM]) in the absence or presence of Ch on its VIF levels. In MM, Et sharply repressed the basal and Ch-induced levels of the P. aeruginosa lectins PA-IL (galactose-specific) and PA-IIL (fucose/mannose-binding) and proteolytic activities, while increasing C6-HSL (autoinducer), hemolytic phospholipase C (PLC-H), and phosphatase levels. In EGM, it profoundly increased lectin, protease, pyocyanin, rhamnolipid (RhaL), autoinducer, and slightly phosphatase levels, but reduced Ch-induced protease, PLC-H, and acid phosphatase activities, except the short-chain HSL levels, which were increased by Et in combination with Ch. The presented results enlighten part of the complex molecular basis of Et-induced aggravation of P. aeruginosa infections due to increasing the bacterium virulence, which runs in parallel to suppression of the patient’s immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Literature Cited

  1. Brown MRW, Scott Foster JHS (1970) A simple diagnostic milk medium for Pseudomonas aeruginosa. J Clin Pathol 23:172–177

    PubMed  CAS  Google Scholar 

  2. Byng GS, Eustice DC, Jensen RA (1979) Biosynthesis of phenazine pigments in mutant and wild-type cultures of Pseudomonas aeruginosa. J Bacteriol 138:846–852

    PubMed  CAS  Google Scholar 

  3. Chen AH, Innis SM, Davidson AG, James SJ (2005) Phosphatidylcholine and lysophosphatidylcholine excretion is increased in children with cystic fibrosis and is associated with plasma homocysteine, S-adenosylhomocysteine, and S-adenosylmethionine. Am J Clin Nutr 81:686–691

    PubMed  CAS  Google Scholar 

  4. Ciocci G, Mitchell EP, Cautier C, Wimmerova M, Sudakevitz D, Perez S, Gilboa-Garber N, Imberty A (2003) Structural basis of calcium and galactose recognition by the lectin PA-IL of Pseudomonas aeruginosa. FEBS Lett 555:297–301

    Article  CAS  Google Scholar 

  5. de Roux A, Cavalcanti M, Marcos MA, Garcia E, Ewig S, Mensa J, Torres A (2006) Impact of alcohol abuse in the etiology and severity of community-acquired pneumonia. Chest 129:1219–1225

    Article  PubMed  Google Scholar 

  6. DeVault JD, Kimbara K, Chakrabarty AM (1990) Pulmonary dehydration and infection in cystic fibrosis: evidence that ethanol activates alginate gene expression and induction of mucoidy in Pseudomonas aeruginosa. Mol Microbiol 4:737–745

    Article  PubMed  CAS  Google Scholar 

  7. Eagon RG (1956) Studies on polysaccharide formation by Pseudomonas fluorescens. Can J Microbiol 2:673–677

    Article  CAS  Google Scholar 

  8. Faunce DE, Garner JL, Llanas JN, Patel PJ, Gregory MS, Duffner LA, Gamelli RL, Kovacs EJ (2003) Effect of acute ethanol exposure on the dermal inflammatory response after burn injury. Alcohol Clin Exp Res 27:1199–1206

    Article  PubMed  CAS  Google Scholar 

  9. Fiske CH, Subbarow J (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  10. Gilboa-Garber N (1972) Purification and properties of hemagglutinin from Pseudomonas aeruginosa and its reaction with human blood cells. Biochim Biophys Acta 273:165–173

    PubMed  CAS  Google Scholar 

  11. Gilboa-Garber N (1982) Pseudomonas aeruginosa lectins. Methods Enzymol 83:378–385

    Article  PubMed  CAS  Google Scholar 

  12. Gilboa-Garber N (1997) Multiple aspects of Pseudomonas aeruginosa lectins. Nova Acta Leopold 75:153–177

    CAS  Google Scholar 

  13. Gilboa-Garber N, Garber N (1989) Microbial lectin cofunction with lytic activities as a model for a general basic lectin role. FEMS Microbiol Rev 63:211–221

    Article  CAS  Google Scholar 

  14. Gilboa-Garber N, Zakut V, Mizrahi L (1973) Production of cholinesterase by Pseudomonas aeruginosa, its regulation by glucose and cyclic AMP and inhibition by antiserum. Biochim Biophys Acta 297:120–124

    PubMed  CAS  Google Scholar 

  15. Glick J, Garber N, Shohet D (1987) Surface haemagglutinating activity of Pseudomonas aeruginosa. Microbios 50:69–80

    PubMed  CAS  Google Scholar 

  16. Greenberg SS, Zhao X, Hua L, Wang JF, Nelson S, Ouyang J (1999) Ethanol inhibits lung clearance of Pseudomonas aeruginosa by a neutrophil and nitric oxide-dependent mechanism, in vivo. Alcohol Clin Exp Res 23:735–744

    PubMed  CAS  Google Scholar 

  17. Imberty A, Wimmerova M, Mitchell EP, Gilboa-Garber N (2004) Structures of the lectins from Pseudomonas aeruginosa : insights into the molecular basis for host glycan recognition. Microb Infect 6:221–228

    Article  CAS  Google Scholar 

  18. Jerrells TR (1991) Immunodeficiency associated with ethanol abuse. Adv Exp Med Biol 288:229–236

    PubMed  CAS  Google Scholar 

  19. Johnson MK, Boese-Marrazzo D (1980) Production and properties of heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Infect Immun 29:1028–1033

    PubMed  CAS  Google Scholar 

  20. Lisa TA, Garrido MN, Domenech CE (1983) Induction of acid phosphatase and cholinesterase activities in Ps. aeruginosa and their in-vitro control by choline, acetylcholine and betaine. Mol Cell Biochem 50:149–155

    Article  PubMed  CAS  Google Scholar 

  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–272

    PubMed  CAS  Google Scholar 

  22. Lucchesi GI, Lisa TA, Domenech CE (1989) Choline and betaine as inducer agents of Pseudomonas aeruginosa phospholipase C activity in high phosphate medium. FEMS Microbiol Lett 48:335–338

    Article  PubMed  CAS  Google Scholar 

  23. Matsufuji M, Nakata K, Yoshimoto A (1997) High production of rhamnolipids by Pseudomonas aeruginosa growing on ethanol. Biotechnol Lett 19:1213–1215

    Article  CAS  Google Scholar 

  24. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GSAB, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711

    Article  PubMed  CAS  Google Scholar 

  25. Mitchell E, Houles C, Sudakevitz D, Wimmerova M, Gautier C, Perez S, Wu AM, Gilboa-Garber N, Imberty A (2002) Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lung of cystic fibrosis patients. Nature Struct Biol 9:918–921

    Article  PubMed  CAS  Google Scholar 

  26. Nicas TI, Iglewski BH (1985) The contribution of exoproducts to virulence of Pseudomonas aeruginosa. Can J Microbiol 31:387–392

    Article  PubMed  CAS  Google Scholar 

  27. Pearson JP, Passador L, Iglewski BH, Greenberg EP (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92:1490–1494

    Article  PubMed  CAS  Google Scholar 

  28. Sage AE, Vasil ML (1997) Osmoprotectant-dependent expression of plcH, encoding the hemolytic phospholipase C, is subject to novel catabolite repression control in Pseudomonas aeruginosa PAO1. J Bacteriol 179:4874–4881

    PubMed  CAS  Google Scholar 

  29. Schlictman D, Kubo M, Shankar S, Chakrabarty AM (1995) Regulation of nucleoside diphosphate kinase and secretable virulence factors in Pseudomonas aeruginosa: roles of algR2 and algH. J Bacteriol 177:2469–2474

    PubMed  CAS  Google Scholar 

  30. Schuster M, Greenberg EP (2006) A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296:73–81

    Article  PubMed  CAS  Google Scholar 

  31. Sokol PA, Ohman DE, Iglewski BH (1979) A more sensitive plate assay for detection of protease production by Pseudomanas aeruginosa. J Clin Microbiol 9:538–540

    PubMed  CAS  Google Scholar 

  32. Wagner VE, Frelinger JG, Barth RK, Iglewski BH (2006) Quorum sensing: dynamic response of Pseudomonas aeruginosa to external signals. Trends Microbiol 14:55–58

    Article  PubMed  CAS  Google Scholar 

  33. Winzer K, Falconer C, Garber NC, Diggle SP, Camara M, Williams P (2000) The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 182:6401–6411

    Article  PubMed  CAS  Google Scholar 

  34. Zhang P, Bagby GJ, Happel KI, Summer WR, Nelson S (2002) Pulmonary host defenses and alcohol. Front Biosci 7:1314–1330

    Google Scholar 

Download references

Acknowledgments

The research, which is part of N. Katri’s Ph.D. thesis, was supported by Bar-Ilan University research funds. The authors thank Ms. Sharon Victor and Ms. Ela Gindy for their great help in the preparation of the manuscript and graphic presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nechama Gilboa-Garber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katri, N., Gilboa-Garber, N. Ethanol Effects on Pseudomonas aeruginosa Lectin, Protease, Hemolysin, Pyocyanin, Autoinducer, and Phosphatase Levels Depending on Medium Composition and Choline Presence. Curr Microbiol 54, 296–301 (2007). https://doi.org/10.1007/s00284-006-0441-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-006-0441-7

Keywords

Navigation