Skip to main content

Production and Regulation of Lipase Activity from Penicillium restrictum in Submerged and Solid-State Fermentations

Abstract

Different carbon (C) sources, mainly carbohydrates and lipids, have been screened for their capacity to support growth and lipase production by Penicillium restrictum in submerged fermentation (SmF) and in solid-state fermentation (SSF). Completely different physiological behaviors were observed after the addition of easily (oleic acid and glucose) and complex (olive oil and starch) assimilable C sources to the liquid and solid media. Maximal lipolytic activities (12.1 U/mL and 17.4 U/g) by P. restrictum were obtained with olive oil in SmF and in SSF, respectively. Biomass levels in SmF (12.2–14.1 mg/mL) and SSF (7.0–8.0 mg/g) did not varied greatly with the distinct C sources used. High lipase production (12.3 U/g) using glucose was only attained in SSF, perhaps due to the ability of this fermentation process to minimize catabolite repression.

This is a preview of subscription content, access via your institution.

Fig. 1.

Literature Cited

  1. Aguilar CN, Augur C, Favela-Torres E, Viniegra-González G (2001) Induction and repression patterns of fungal tannase in solid-state and submerged cultures. Proc Biochem 36:565–570

    Article  CAS  Google Scholar 

  2. Aidoo KE, Hendry R, Wood BJB (1981) Estimation of fungal growth in a solid state fermentation system. Appl Microbiol Biotechnol 12:6–9

    Article  CAS  Google Scholar 

  3. Akhtar MW, Mirza AQ, Na wazish MN, Chughtai MID (1983) Effect of triglycerides on the production of lipids and lipase by Mucor hiemalis. Can J Microbiol 29:664–669

    PubMed  CAS  Article  Google Scholar 

  4. Aranda C, Robledo A, Loera O, Contreras-Esquivel JC, Rodríguez R, Aguila CN (2006) Fungal invertase expression in solid-state fermentation. Food Technol Biotechnol 44:229–233

    CAS  Google Scholar 

  5. Asther M, Haon M, Roussos S, et al. (2002) Feruloyl esterase from Aspergillus niger a comparison of the production in solid state and submerged fermentation. Proc Biochem 38:685–691

    Article  CAS  Google Scholar 

  6. Bornscheuer UT, Bessler C, Srinivas R, Krishna SH (2002) Optimizing lipases and related enzymes for efficient application. Trends Biotechnol 20:433–437

    PubMed  Article  CAS  Google Scholar 

  7. Cerda-Montalvo ML, Contreras-Esquivel JC, Rodriguez- -Herrera R, Aguilar CN (2005) Glucose diffusion on support for solid-state fermentation and its influence on tannase production profiles. Int J Chem Reactor Eng 3:1–10

    Article  Google Scholar 

  8. Feniksova RV, Tikhomrova AS, Rakhleeva BE (1960) Conditions for forming amylase and proteinase in surface culture of Bacillus subtilis. Mikrobiologica 29:745–748

    CAS  Google Scholar 

  9. Ferrer P, Montesinos JL, Valero F, Solá C (2001) Production of native and recombinant lipases by Candida rugosa. A review. Appl Biochem Biotechnol 95:221–-235

    PubMed  Article  CAS  Google Scholar 

  10. Freire DMG, Teles EF, Bon EPS, Sant’Anna GL Jr (1997) Lipase production by Penicillium restrictum in a bench-scale fermentor. Effect of carbon, nitrogen nutrition,agitation and aeration. Appl Biochem Biotechnol 63:409–421

    PubMed  Google Scholar 

  11. Freire DMG, Gomes PM, Bon EPS, Sant’Anna GL Jr (1997) Lipase production by a new promising strain of Penicillium restrictum. J Braz Soc Microbiol 28:6–12

    Google Scholar 

  12. Gombert AK, Pinto AL, Castilho LR, Freire DMG (1999) Lipase production in solid-state fermentation using babassu cake as substrate. Proc Biochem 35:85–90

    Article  CAS  Google Scholar 

  13. Helistö P, Korpela T (1998) Effects of detergents on activity of microbial lipases as measured by the nitrophenyl alkanoate esters method. Enzyme Microbiol Technol 23:113–117

    Article  Google Scholar 

  14. Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools in biotechnology. Trends Biotechnol 16:396–403

    PubMed  Article  CAS  Google Scholar 

  15. Maldonado MC, Strasser de Saad AM (1998) Production of pectinesterase and polygalactruronase by Aspergillus niger in submerged and solid state systems. J Ind Microbiol Biotechnol 20:34–38

    PubMed  Article  CAS  Google Scholar 

  16. Mitchell DA, Berovic M, Krieger N (2002) Overview of solid state bioprocessing. Biotechnol Annu Rev 8:183–225

    PubMed  CAS  Article  Google Scholar 

  17. Nahas E (1988) Control of lipase production by Rhizopus Oligosporus under various growth conditions J Gen Microbiol 134:227–233

    CAS  Google Scholar 

  18. Nandakumar MP, Thakur MS, Raghavarao KSMS, Ghildyal NP (1999) Studies on catabolite repression in solid state fermentation for biosynthesis of fungal amylases. Lett Appl Microbiol 29:380–384

    Article  CAS  Google Scholar 

  19. Y, Miyairi S, Yamada K (1968) Sterol requirements for the lipase production by Candida cylindracea. Agric Biol Chem 32:1476–1478

    CAS  Google Scholar 

  20. MB, Pinto AL, Gombert AK, et al. (2000) Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate. Appl Biochem Biotechnol 84:1137–1145

    PubMed  Article  Google Scholar 

  21. Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131

    PubMed  CAS  Google Scholar 

  22. Pandey A, Selvakumar P, Soccol CR, Nigam P (1999b) Solid-state fermentation for the production of industrial enzymes. Curr Sci 77:149–162

    CAS  Google Scholar 

  23. Papagianni M, Nokes SE, Filer K (1999) Production of phytase by Aspergillus niger in submerged and solid-state fermentation. Proc Biochem 35:397–402

    Article  CAS  Google Scholar 

  24. Papagianni M, Nokes SE, Filer K (2001) Submerged and solid-state phytase fermentation by Aspergillus niger: effects of agitation and medium viscosity on phytase production, fungal morphology and inoculum performance. Food Technol Biotechnol 39:319–326

    CAS  Google Scholar 

  25. Pérez-Guerra N, Torrado-Agrasar A, López-Macias C, Pastrana L (2003) Main characteristics and applications of solid substrate fermentation. Electron J Environ Agric Food Chem 2:343–350

    Google Scholar 

  26. Raghavarao KSMS, Ranganathan TV, Karanth NG (2003) Some engineering aspects of solid-state fermentation. Biochem Eng J 13:127–135

    Article  CAS  Google Scholar 

  27. Ramesh MV, Lonsane BK (1991) Ability of a solid-state fermentation fermentation technique to significantly minimize catabolic repression of a α-amylase production by Bacillus licheniformes M 27. Appl Microbiol Biotechnol 35:591–593

    Article  CAS  Google Scholar 

  28. Rogalska E, Douchert I, Verger R (1997) Microbial lipases: structures, function and industrial applications. Biochem Soc Trans 25:161–164

    PubMed  CAS  Google Scholar 

  29. Sakurai Y, Lee TH, Shiota H (1977) On the convenient method for glucosamine estimation in koji. Agric Biol Chem 41:619–24

    CAS  Google Scholar 

  30. Solis-Pereyra S, Favela-Torres E, Gutierrez-Rojas M, et al. (1996) Production of pectinases by Aspergillus niger in solid state fermentation at high initial glucose concentration. Word J Microbiol Biotechnol 12:257–260

    Article  CAS  Google Scholar 

  31. Sztajer H, Maliszewska I (1989) The effects of culture conditions on. lipolytic productivity of Penicillium citrinum. Biotechnol Lett 11:895–898

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support from FAPERJ, CNPq/PROFIX, CNPq/Universal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise M. G. Freire.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Azeredo, L.A.I., Gomes, P.M., Sant’Anna, G.L. et al. Production and Regulation of Lipase Activity from Penicillium restrictum in Submerged and Solid-State Fermentations. Curr Microbiol 54, 361–365 (2007). https://doi.org/10.1007/s00284-006-0425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-006-0425-7

Keywords

  • Lipase
  • Oleic Acid
  • Lipase Activity
  • Lipolytic Activity
  • Lipase Production