Skip to main content
Log in

Quantitative Detection and Differentiation of Free-Living Amoeba Species Using SYBR Green–Based Real-Time PCR Melting Curve Analysis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Real-time polymerase chain reaction melting curve analysis (MCA) allows differentiation of several free-living amoebae species. Distinctive characteristics were found for Naegleria fowleri, N. lovaniensis, N. australiensis, N. gruberi, Hartmanella vermiformis, and Willaertia magna. Species specificity of the amplicons was confirmed using agarose gel electrophoresis and sequence-based approaches. Amplification efficiency ranged from 91% to 98%, indicating the quantitative potential of the assay. This MCA approach can be used for quantitative detection of free-living amoebae after cultivation but also as a culture-independent detection method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Literature Cited

  1. Aguilera A, Gomez F, Lospitao E, Amils R (2006) A molecular approach to the characterization of the eukaryotic communities of an extreme acidic environment: Methods for DNA extraction and denaturing gradient gel electrophoresis analysis. Syst Appl Microbiol 29:593–605

    Article  PubMed  Google Scholar 

  2. Beattie TK, Tomlinson A, Mcfayden AK, Seal DV (2002) Most probable number method of amoebal enumeration in the determination of the amoebicidal activity of multi-purpose solutions. Invest Ophthalmol Vis Sci 43:2992–3000

    Google Scholar 

  3. Behets J, Declerck P, Delaedt Y, Verelst L, Ollevier F (2006) A duplex real-time PCR assay for the quantitative detection of Naegleria fowleri in water samples. Water Res (accepted)

  4. Behets J, Seghi F, Declerck P, Verelst L, Duvivier L, Van Damme A, Ollevier F (2003) Detection of Naegleria spp. and Naegleria fowleri: a comparison of flagellation tests, ELISA and PCR. Water Sci Technol 47:117–122

    PubMed  CAS  Google Scholar 

  5. Clark CG (1990) Genome structure and evolution of Naegleria and its relatives. J Protozool 37:S2–S6

    Google Scholar 

  6. Giglio S, Monis PT, Saint CP (2005) Legionella confirmation using real-time PCR and SYTO9 is an alternative to current methodology. Appl Environ Microbiol 71:8944–8948

    Article  PubMed  CAS  Google Scholar 

  7. Kilvington S, Beeching J (1995) Development of a PCR for identification of Naegleria fowleri from the environment. Appl Environ Microbiol 61:3764–3767

    PubMed  CAS  Google Scholar 

  8. Limor JR, Lal AA, Xiao LH (2002) Detection and differentiation of Cryptosporidium parasites that are pathogenic for humans by real-time PCR. J Clin Microbiol 40:2335–2338

    Article  PubMed  CAS  Google Scholar 

  9. Marciano-Cabral F, Maclean R, Mensah A, Lapat-Polasko L (2003) Identification of Naegleria fowleri in domestic water sources by nested PCR. Appl Environ Microbiol 69:5864–5869

    Article  PubMed  CAS  Google Scholar 

  10. Monis PT, Giglio S, Keegan AR, Thompson RCA (2005) Emerging technologies for the detection and genetic characterization of protozoan parasites. Trends Parasitol 21:340–346

    Article  PubMed  CAS  Google Scholar 

  11. Monis PT, Giglio S, Saint CP (2005) Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Anal Biochem 340:24–34

    Article  PubMed  CAS  Google Scholar 

  12. Ortega-Rivas A, Lorenzo-Morales J, Martinez-Carretero E, Lloberas MV, Hernandez BV, Del Castillo-Remiro A (2004) Design and evaluation of a specific primer pair for the diagnosis and identification of Acanthamoeba polyphaga. Curr Microbiol 48:360–363

    Article  PubMed  CAS  Google Scholar 

  13. Pelandakis M, Pernin P (2002) Use of multiplex PCR and PCR restriction enzyme analysis for detection and exploration of the variability in the free-living amoeba Naegleria in the environment. Appl Environ Microbiol 68:2061–2065

    Article  PubMed  CAS  Google Scholar 

  14. Pelandakis M, Serre S, Pernin P (2000) Analysis of the 5.8S rRNA gene and the internal transcribed spacers in Naegleria spp. and in N. fowleri. J Eukaryot Microbiol 47:116–121

    Article  PubMed  CAS  Google Scholar 

  15. Riviere D, Szczebara FM, Berjeaud JM, Frere J, Hechard Y (2006) Development of a real-time PCR assay for quantification of Acanthamoeba trophozoites and cysts. J Microbiol Methods 64:78–83

    Article  PubMed  CAS  Google Scholar 

  16. Rodriguez-Zaragoza S (1994) Ecology of free-living amoebae. Crit Rev Microbiol 20:225–241

    PubMed  CAS  Google Scholar 

  17. Schroeder JM, Booton GC, Hay J, Niszl IA, Seal DV, Markus MB, Fuerst PA, Byers TJ (2001) Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of Acanthamoebae from humans with keratitis and from sewage sludge. J Clin Microbiol 39:1903–1911

    Article  PubMed  CAS  Google Scholar 

  18. Schuster FL, Visvesvara GS (2004) Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasitol 34:1001–1027

    Article  PubMed  Google Scholar 

  19. Seurinck S, Defoirdt T, Verstraete W, Siciliano SD (2005) Detection and quantification of the human-specific HF183 bacteroides 16S rRNA genetic marker with real-time PCR for assessment of human faecal pollution in freshwater. Environ Microbiol 7:249–259

    Article  PubMed  CAS  Google Scholar 

  20. Sheehan KB, Fagg JA, Ferris MJ, Henson JM (2003) PCR detection and analysis of the free-living amoeba Naegleria in hot springs in Yellowstone and Grand Teton National Parks. Appl Environ Microbiol 69:5914–5918

    Article  PubMed  CAS  Google Scholar 

  21. Suzan-Monti M, La Scola B, Raoult D (2006) Genomic and evolutionary aspects of Mimivirus. Virus Res 117:145–155

    Article  PubMed  CAS  Google Scholar 

  22. Swanson MS, Hammer BK (2000) Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 54:567–613

    Article  PubMed  CAS  Google Scholar 

  23. Tanriverdi S, Tanyeli A, Baslamisli F, Koksal F, Kilinc Y, Feng XC, Batzer G, Tzipori S, Widmer G (2002) Detection and genotyping of oocysts of Cryptosporidium parvum by real-time PCR and melting curve analysis. J Clin Microbiol 40:3237–3244

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Behets.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behets, J., Declerck, P., Delaedt, Y. et al. Quantitative Detection and Differentiation of Free-Living Amoeba Species Using SYBR Green–Based Real-Time PCR Melting Curve Analysis. Curr Microbiol 53, 506–509 (2006). https://doi.org/10.1007/s00284-006-0241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-006-0241-0

Keywords

Navigation