Skip to main content
Log in

Enhanced Protein Export in Saccharomyces cerevisiae nud1 Mutants Is an Active Process

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae NUD1 gene codes for a spindle pole body component and nud1 temperature-sensitive mutants arrest at 38°C in late anaphase with a tendency for lysis. We found that addition of 10% sorbitol to the medium complemented the lytic phenotype, and determination of colony-forming units evidenced the viability of nud1 cells for at least 48 hours at 38°C. The protein amount in cell-free medium increased at 38°C, and evidence is presented that intact nud1 cells exported proteins in amounts 10-fold higher compared wild type strains. The observed high amounts of extracellular acid phosphatase, invertase, and bacterial β-galactosidase suggested the export of secretory proteins. This was evidenced by construction of nudlsec mutants and the observation that interruption of the secretory pathway resulted in absence of protein export at 38°C. Proteins were exported through a cell wall showing increased porosity at 38°C. The extracellular release of Gas1p and the facilitated transformability with plasmid DNA of nud1 cells indicated alternations of their cell walls at 38°C. The export of proteins depends on oxidative phosphorylation as evidenced by disruption of the COX10 gene. Experiments with inhibitors of mitochondrial functions showed that the synthesis of adenosine triphosphate, but not the electron transport along the respiratory chain, has a key role in the export of proteins. The data show that the phenotype of S. cerevisiae nud1 mutants is characterized by enhanced export of secretory proteins and that the passage of proteins through the walls of nud1 cells is an active process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Literature Cited

  1. Adams IR, Kilmartin JV (1999) Localization of core spindle pole (CSP) body component during duplication in Saccharomyces cerevisiae. J cell boil 145:809–823

    Article  PubMed  CAS  Google Scholar 

  2. Alexander I, Venkov P, Del Giudice A, Wolf K, Massardo DR, Del Giudice L (2001) Protein overexport in a Saccharomyces cerevisiae mutant depends on mitochondria genome integrity and function Microbiol Res 156:9–12

    Article  Google Scholar 

  3. Alexander I, San Segundo P, Venkov P, et al. (2004) Characterization of a Saccharomyces cerevisiae thermosensitive lytic mutant leads to the identification of a new new allele of the NUD1 gene. Biochem Cell Biol 36:2196–2213

    Article  CAS  Google Scholar 

  4. Burke D, Dawson D, Stearns T (2000) Methods in yeast genetics: gene replacement. Cold Spring Harboui, NY: Cold Spring Harbor Laboratory Press pp 59–64

    Google Scholar 

  5. Davis R (1986) Compartmental and regulatory mechanisms in the arginase pathways of N. crassaa and S. cerevisie. Microbiol Rev 50:280–313

    PubMed  CAS  Google Scholar 

  6. DeNobel JG, Klis FM, Munnik T, Priem J, Vandente H (1990) An assay of relative cell-wall porositv in Saccharomyces cerevisiae, Kluyveromyces lactis and Schisosaccharomyces pombe. Yeast 6:483–490

    Article  CAS  Google Scholar 

  7. De Nobel JG, Barnett JA (1991) Passage of molecules through yeast cell-wall: A brief assay-review. Yeast 7:313–323

    Article  PubMed  Google Scholar 

  8. DeNobel JG, Klis FM, Ram A, et al. (1991) Cyclic variation in the permeability of the cell-wall of Saccharomyces cerevisia. Yeast 7:589–598

    Article  CAS  Google Scholar 

  9. Gaynor EC, Mondesert G, Grimme SJ (1999). MCD4 encodes a conserved endoplasmic reticulum membrane protein essential for glycosylphosphatidylinositol anchor synthesis in yeast. Mol Biol cell 10:627–648

    PubMed  CAS  Google Scholar 

  10. Goldstein A, Lampen J (1975) Fructofuranoside fructohydrolase from yeast. Methods Enzym 42:504–511

    Article  PubMed  CAS  Google Scholar 

  11. Grant CM, Maclver FH, Daves IW (1997) Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. FEBS Lett 410:219–222

    Article  PubMed  CAS  Google Scholar 

  12. Grote E, Carr CM, Novick PJ (2000) Ordering the final events in yeast exocytosis. J Cell Biol 151:439–451

    Article  PubMed  CAS  Google Scholar 

  13. Grunneberg U, Campbell K, Simpson C, et al. (2000) Nudl p links astral microtubule organization and the control of exit of mitosis. EMBO 19:6475–6488

    Article  Google Scholar 

  14. Harlow E, Lane D (1988) Antibodies: A laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press

    Google Scholar 

  15. Hartwell L, Weinert T, Kadyk L, et al. (1994) Cell-cycle checkpoints, genomic integrity and cancer. Cold Spring Harb Symp Quant Biol 59:259–263

    PubMed  CAS  Google Scholar 

  16. Horvath A, Reizman H (1994) Rapid protein extraction from Saccharomyces cerevisiae. Yeast 10:1305–1310

    Article  PubMed  CAS  Google Scholar 

  17. Hoffman R, Valencia A (2004). A gene network for navigating the literature. Nat Genet 36: 664–681

    Article  CAS  Google Scholar 

  18. ItoH, Fukuda Y, Murata et al. (1983) Transformation of intact yeast cells treated with alkali cations. Bacteriol 153:163–168

    CAS  Google Scholar 

  19. Kalebina TS, Laurinavichiute DK, Packeiser AN (2002) Correct GPI-anchor synthesis is required for the incorporation of endoglucane/glucanosyltransferase Bgl2p into the Saccharomyces cerevisiae cell wall. FEMS Microbiol Lett 210:81–85

    Article  PubMed  CAS  Google Scholar 

  20. Klis FM (1994) Cell wall assembly in yeast. Yeast 10:851–870

    Article  PubMed  CAS  Google Scholar 

  21. Lemire JM, Willocks T, Halvarson HO, et al. (1985) Regulation of repressible acid phosphatase gene transcription in Saccharomyces cerevisiae. Mol Cell Biol 15:2131–2141

    Google Scholar 

  22. Moracci M, La Volpe A, Pulitzer J, et al. (1992) Expression of the thermostabile alactosidase from the archaebacterium Sulfolobus solfatiricus in Saccharomyces cerevisiae and characterization of a new inducible promoter for heterologous expression. J Bacteriol l74:873–882

    Google Scholar 

  23. Nobrega MP, Nobrega FG, Tzagoloff A (1990) COX 10 codes for a protein homologous to the ORF1 product of Paracoccus denitrificans and is required for the synthesis of cytochrome oxidase. J bio1 Chem 265:l4220–14226

    Google Scholar 

  24. Nurse P, Masui Y, Hertwell L (1998) Understanding the cell-cycle. Nat Med 4:1103–1106

    Article  PubMed  CAS  Google Scholar 

  25. Pisani F, Rella R, Raia G, et al. (1990) Termostabile beta-galactosidase from the archaebacterium Sulfolobus solfataricus: Purification and properties. Eur J Biochem 187:321–328

    Article  PubMed  CAS  Google Scholar 

  26. Popolo L, Vai M (1999) The Gas 1 glycoprotein, a putative wall polymer cross-linker. Biochem Biophys Acta 1426:385–440

    PubMed  CAS  Google Scholar 

  27. Rasmussen AK, Chatterjee A, Rasmussen LJ, et al. (2003) Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae. Nucl Acid Res 31: 3909–3917

    Article  CAS  Google Scholar 

  28. Schonholzer F, Schweingruber AK, Trachsel (1985) Intracellular maturation and secretion of acid phosphatase of Saccharomyces cerevisiae. Eur.J.biochem 14:273–279

    Article  Google Scholar 

  29. Waltschewa L, Philipova D, Venkov P (1989) Increased extracellular secretion fragile mutants of Saccharomyces cerevisiae. Yeast 5:313–320

    Google Scholar 

  30. Zaworski P, Gill G (1988) Precipitation and recovery of proteins from culture supernatant using zinc. Anal Biochem 73l:440–444

    Article  Google Scholar 

  31. Zlotnik H, Fernandez MP, Bowers B, et al. (1984) S. cerevisiae mannoproteins form an external cell-wall layer that determines wall porosity. J Bacteriol I59:1018–1026

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Pesheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pesheva, M.G., Koprinarova, M.K. & Venkov, P. Enhanced Protein Export in Saccharomyces cerevisiae nud1 Mutants Is an Active Process. Curr Microbiol 53, 496–501 (2006). https://doi.org/10.1007/s00284-006-0210-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-006-0210-7

Keywords

Navigation