Skip to main content
Log in

The RpoS-Mediated Regulation of Isocitrate Dehydrogenase Gene Expression in Escherichia coli

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The Escherichia coli NADP+-dependent isocitrate dehydrogenase (IDH; EC 1.1.1.42), encoded by an icd gene, is a tricarboxylic acid (TCA) cycle enzyme responsible for the oxidative decarboxylation of isocitrate to α-ketoglutarate. In order to examine how the icd gene expression is regulated, an icd-lacZ reporter fusion was constructed. While the icd gene was induced in exponential growth phase, it was repressed in stationary growth phase. Genetic inactivation of an rpoS gene, whose product is an alternative sigma factor, induced the icd gene expression approximately 4.8 times more in the stationary phase and the IDH enzyme activity in the rpoS mutant was 3.2 times higher than that in the wild type, indicating that the RpoS factor acts as a negative regulator of the icd gene expression in the stationary phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Literature Cited

  1. Amarasingham CD, Davis BD (1965) Regulation of α-ketoglutarate dehydrogenase formation in Escherichia coli. J Biol Chem 240:3664–3668

    CAS  PubMed  Google Scholar 

  2. Arnold CN, McElhanon J, Lee A, Leonhart R, Siegele DA (2001) Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response. J Bacteriol 183:2178–2186

    Article  CAS  PubMed  Google Scholar 

  3. Becker G, Klauck E, Hengge-Aronis R (2000) The response regulator RssB, a recognition factor for sigmaS proteolysis in Escherichia coli, can act like an anti-sigmaS factor. Mol Microbiol 35:657–666

    Article  CAS  PubMed  Google Scholar 

  4. Berlyn MKB, Low KB, Ludd KE (1996) Linkage map of Escherichia coli K-12. Escherichia coli and Salmonella typhimurium: cellular and molecular biology, 2nd ed. ASM Press, Washington, DC, p 1715–1902

    Google Scholar 

  5. Choi IY, Sup KI, Kim HJ, Park JW (2003) Thermosensitive phenotype of Escherichia coli mutant lacking NADP(+)-dependent isocitrate dehydrogenase. Redox Rep 8:51–56

    Article  CAS  PubMed  Google Scholar 

  6. Cronan JE, LaPorte DC (1996) Tricarboxylic acid cycle and glyoxylate bypass. Escherichia coli and Salmonella typhimurium: cellular and molecular biology. 2nd ed.,. ASM Press, Washington, DC, p 206–216 vol. 1

    Google Scholar 

  7. Dean AM, Koshland DE Jr (1993) Kinetic mechanism of Escherichia coli isocitrate dehydrogenase. Biochemistry 32:9302–9309

    Article  CAS  PubMed  Google Scholar 

  8. Garnak M, Reeves HC (1979) Phosphorylation of isocitrate dehydrogenase of Escherichia coli. Science 203:1111–1112

    CAS  PubMed  Google Scholar 

  9. Hengge-Aronis R (1996) Regulation of gene expression during entry into stationary phase. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds). Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, DC, p 1497–1512

    Google Scholar 

  10. Hurley JH, Dean AM, Thorsness PE, Koshland DE Jr, Stroud RM (1990) Regulation of isocitrate dehydrogenase by phosphorylation involves no long-range conformational change in the free enzyme. J Biol Chem 265:3599–3602

    CAS  PubMed  Google Scholar 

  11. Hurley JH, Thorsness PE, Ramalingam V, Helmers NH, Koshland DE Jr, Stroud RM (1989) Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase. Proc Natl Acad Sci USA 86:8635–8639

    CAS  PubMed  Google Scholar 

  12. Iuchi S, Weiner L (1996) Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments. J Biochem (Tokyo) 120:1055–1063

    CAS  Google Scholar 

  13. Jung IL, Kim IG (2003) Transcription of ahpC, katG, and katE genes in Escherichia coli is regulated by polyamines: polyamine-deficient mutant sensitive to H2O2-induced oxidative damage. Biochem Biophys Res Commun 301:915–922

    Article  CAS  PubMed  Google Scholar 

  14. Kornberg HL (1966) The role and control of the glyoxylate cycle in Escherichia coli. Biochem J 99:1–11

    CAS  PubMed  Google Scholar 

  15. Kornberg HL (1967) The regulation of anaplerotic enzymes in E. coli . Bull Biochem Soc Chim Biol 4:1479–1490

    Google Scholar 

  16. LaPorte DC, Koshland DE Jr (1982) A protein with kinase and phosphatase activities involved in regulation of tricarboxylic acid cycle. Nature 300:458–460

    Article  CAS  PubMed  Google Scholar 

  17. LaPorte DC, Thorsness PE, Koshland DE Jr (1985) Compensatory phosphorylation of isocitrate dehydrogenase. A mechanism for adaptation to the intracellular environment. J Biol Chem 260:10563–10568

    CAS  PubMed  Google Scholar 

  18. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  19. Ornston LN, Ornston MK (1969) Regulation of glyoxylate metabolism in Escherichia coli K-12. J Bacteriol 98:1098–1108

    CAS  PubMed  Google Scholar 

  20. Patten CL, Kirchhof MG, Scherttg MR, Morton RA, Schellhorn HE (2004) Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol Gen Genom 272:580–591

    CAS  Google Scholar 

  21. Prost JF, Negre D, Oudot C, Murakami K, Ishihama A, Cozzone AJ, Cortay JC (1999) Cra-dependent transcriptional activation of the icd gene of Escherichia coli. J Bacteriol 181:893–898

    CAS  PubMed  Google Scholar 

  22. Ramseier TM, Negre D, Cortay JC, Scarabel M, Cozzone AJ, Saier MH Jr (1993) In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium. J Mol Biol 234:28–44

    Article  CAS  PubMed  Google Scholar 

  23. Russell JB, Diex-Gonzalez F (1998) The effects of fermentation acids on bacterial growth. Adv Microb Physiol 38:205–234

    Google Scholar 

  24. Schellhorn HE, Stones VL (1992) Regulation of katF and katE in Escherichia coli K-12. J Bacteriol 174:4769–4776

    CAS  PubMed  Google Scholar 

  25. Simons RW, Houman F, Kleckner N (1987) Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53:85–96

    Article  CAS  PubMed  Google Scholar 

  26. Tanaka K, Takayanagi Y, Fujita N, Ishihama A, Takahashi H (1993) Heterogeneity of the principal σ factor in Escherichia coli: the rpoS gene product σ38 is a second principal σ factor of RNA polymerase in stationary phase Escherichia coli. Proc Natl Acad Sci USA 90:3511–3515

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nuclear Research and Development Program from the Ministry of Science and Technology (MOST) of Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Gyu Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, I.L., Kim, S.K. & Kim, I.G. The RpoS-Mediated Regulation of Isocitrate Dehydrogenase Gene Expression in Escherichia coli. Curr Microbiol 52, 21–26 (2006). https://doi.org/10.1007/s00284-005-8006-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-005-8006-8

Keywords

Navigation