Skip to main content
Log in

Plant Growth–Promoting Bacteria Facilitate the Growth of the Common Reed Phragmites australisin the Presence of Copper or Polycyclic Aromatic Hydrocarbons

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

To test whether plant growth–promoting bacteria might be useful in facilitating the growth of Phragmites australis, the common reed, in the presence of metals and organic compounds, P. australis seeds were treated with plant growth–promoting bacteria. The bacterium Pseudomonas asplenii AC was genetically transformed to express a bacterial gene encoding the enzyme 1-aminocyclopropane-1-carboxylate deaminase, and both the native and transformed bacteria were tested in conjunction with P. australis. Inoculation of seeds, which were subsequently grown in the presence of copper or creosote, with transformed P. asplenii AC significantly increased seed germination. Moreover, the addition of either native or transformed P. asplenii AC to P. australis seeds enabled the plants (shoots and roots) to attain a greater size than noninoculated plants after growth in soil in the presence of either copper or creosote.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Literature Cited

  1. Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology, 2nd ed. New York, NY: Academic

    Google Scholar 

  2. Ali NA, Bernal MP, Ater M (2002) Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 239:103–111

    CAS  Google Scholar 

  3. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  4. Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  PubMed  CAS  Google Scholar 

  5. Burke DJ, Hamerlynck EP, Hahn D (2002) Interactions among plant species and microorganisms in salt marsh sediments. Appl Environ Microbiol 69:1157–1164

    Google Scholar 

  6. Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    PubMed  CAS  Google Scholar 

  7. Dworkin DN, Foster J (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–601

    PubMed  CAS  Google Scholar 

  8. Glass DJ (2000) Economic potential of phytoremediation. In: Raskin I (ed) Phytoremediation of toxic metals: Using plants to clean up the environment. New York, NY: Wiley-Interscience, pp 15–31

    Google Scholar 

  9. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  10. Glick BR, (1995) Metabolic load and heterogeneous gene expression. Biotechnol Adv 13:247–261

    PubMed  CAS  Google Scholar 

  11. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 1990:63–68

    Google Scholar 

  12. Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. London, UK: Imperial College Press, pp 86–179

    Google Scholar 

  13. Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    CAS  PubMed  Google Scholar 

  14. Gordon SA, Weber RP (1951) Colorometric estimation of indoleacetic acid. Plant Physiol 26:192–195

    Article  CAS  PubMed  Google Scholar 

  15. Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    CAS  Google Scholar 

  16. Holguin G, Glick BR (2001) Expression of the ACC deaminase gene from Enterobacter cloacae UW4 in Azospirillum brasilense. Microb Ecol 41:281–288

    PubMed  CAS  Google Scholar 

  17. Holguin G, Glick BR (2003) Transformation of Azospirillum brasilense Cd with an ACC deaminase gene from Enterobacter cloacae UW4 fused to the Tetr gene promoter improves its fitness and plant growth promoting ability. Microb Ecol 4:122–133

    Google Scholar 

  18. Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831

    CAS  Google Scholar 

  19. Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130:453–463

    PubMed  CAS  Google Scholar 

  20. Koch B, Worm J, Jensen LE, Højberg O, Nybroe O (2001) Carbon limitation induces σs-dependent gene expression in Pseudomonas fluorescens in soil. Appl Environ Microbiol 67:3363–3370

    Article  PubMed  CAS  Google Scholar 

  21. Macek T, Mackovà M, Kás J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  PubMed  CAS  Google Scholar 

  22. Massacci A, Pietrini F, Iannelli MA (2001) Remediation of wetlands by Phragmites australis: The biological basis. Minerva Biotechnologica 13:135–140

    Google Scholar 

  23. Mayak S, Tirosh T, Glick BR (2004) Plant growth promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  24. Mayak S, Tirosh T, Glick BR (2004). Plant growth-promoting bacteria that confer resistance in tomato to salt stress. Plant Physiol Biochem 42:565–572

    Article  PubMed  CAS  Google Scholar 

  25. Nie L, Shah S, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361

    Article  CAS  Google Scholar 

  26. Patten CL, Glick BR (2002) Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary phase sigma factor RpoS. Can J Microbiol 48:635–642

    Article  PubMed  CAS  Google Scholar 

  27. Patten CL, Glick BR (2002) The role of bacterial indoleacetic acid in the development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed  CAS  Google Scholar 

  28. Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  PubMed  CAS  Google Scholar 

  29. Penrose DM, Moffatt BA, Glick BR (2001) Determination of 1-aminocyclopropane-1-carboxylic acid (ACC) to assess the effect of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol 47:77–80

    PubMed  CAS  Google Scholar 

  30. Saleh SS, Glick BR (2001) Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4. Can J Microbiol 47:698–705

    Article  PubMed  CAS  Google Scholar 

  31. Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843

    Article  PubMed  CAS  Google Scholar 

  32. Shardendu, Salhani N, Boulyga SF, Steugel E (2003) Phytoremediation of selenium by two halophyte species in subsurface flow constructed wetland. Chemosphere 50:967–973

    Article  PubMed  CAS  Google Scholar 

  33. Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany 47:271–280

    Article  CAS  Google Scholar 

  34. Tischer S, Hübner T (2002) Model trials for phytoremediation of hydrocarbon contaminated sites. International Journal of Phytoremediation 4:187–203

    CAS  Google Scholar 

  35. Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R (2005) Genome-wide analysis of the general stress response network in Escherichia coli: σs-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603

    PubMed  CAS  Google Scholar 

  36. Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration. Environ Int 20:685–700

    Google Scholar 

  37. Xu KD, Franklin MJ, Park C-H, McFeters GA, Stewart PS (2001). Gene expression and protein levels of the stationary phase sigma factor, RpoS, in continuously-fed Pseudomonas aeruginosa biofilms. FEMS Microbiol Lett 199:67–71

    Article  PubMed  CAS  Google Scholar 

  38. Ye ZH, Baker AJM, Wong MH, Willis AJ (1997) Zinc, lead and cadmium tolerance, uptake and accumulation by the common reed, Phragmites australis (Cav) Trin Ex. Steudel. Ann Bot (Lond) 80:363–370

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Strategic Grant from the Natural Sciences and Engineering Research Council to B. R. G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard R. Glick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, M., Warner, B.G. & Glick, B.R. Plant Growth–Promoting Bacteria Facilitate the Growth of the Common Reed Phragmites australisin the Presence of Copper or Polycyclic Aromatic Hydrocarbons. Curr Microbiol 51, 425–429 (2005). https://doi.org/10.1007/s00284-005-4584-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-005-4584-8

Keywords

Navigation