Skip to main content
Log in

Low-Intensity Photosensitization May Enhance RecA Production

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Three bacterial strains—Escherichia coli, Acinetobacter calcoaceticus, and the A. calcoaceticus RecA(−) mutant—underwent photosensitization by a low-concentration (0.73 μmol/L) tetramethyl pyridyl porphine (a cationic hydrophylic photosensitizer) and a 4-J/cm2 dose of 407 to 420 nm blue light. The viability of the first two strains decreased by approximately 60%. and that of the RecA(−) strain decreased by 90%. Increasing the amount of photosensitizer to 14.6 μmol/L at the same dose of blue light resulted in a 95% to 98% decrease in viability of the three strains. Very little damage to the bacterial DNA was observed after this treatment. Increasing the concentration photosensitizer under the same illumination conditions also resulted in very little damage to the DNA. Western blotting demonstrated that the low photosensitization procedures enhance RecA production for mending the damaged chromosomal DNA. RecA production as a result of low-dose photosensitization was confirmed and demonstrated by immunofluorescent staining and gold immunolabeling. Although DNA is not the primary target for photosensitization, this process of RecA production may provide a certain degree of DNA mending and may also affect the survival of bacterial cells on low-intensity photosensitization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Literature Cited

  1. Malik Z, Gozhansky S, Nitzan Y (1982) Effect of photoactivated hematoporphyrin derivative on bacteria and antibiotic resistance. Microbios Lett 21:103–112

    CAS  Google Scholar 

  2. Nitzan Y, Balzam-Sudakevitz A, Ashkenazi H (1998) Eradication of Acinetobacter baumannii by photosensitized agents in vitro. J Photochem Photobiol B 42:211–218

    Article  CAS  PubMed  Google Scholar 

  3. Bertoloni G, Salvato B, Dall, Acqua M, Vazzoler M, Jori G (1984) Hematoporphyrin-sensitized photoinactivation of Streptococcus faecalis. Photochem Photobiol 39:811–816

    CAS  PubMed  Google Scholar 

  4. Nitzan Y, Gutterman M, Malik Z, Ehrenberg B (1992) Inactivation of Gram negative bacteria by photosensitized porphyrins. Photochem Photobiol 55:89–96

    CAS  PubMed  Google Scholar 

  5. Nitzan Y, Shainberg B, Malik Z (1987) Photodynamic effects of deuteroporphyrin on Gram positive bacteria. Curr Microbiol 15:251–258

    Article  CAS  Google Scholar 

  6. Nitzan Y, Gozhansky S, Malik Z (1983) Effect of photoactivated hematoporphyrin derivative on the viability of Staphylococcus aureus. Curr Microbiol 8:279–284

    Article  CAS  Google Scholar 

  7. Merchat M, Bertolini G, Giacomini P, Villanueva A, Jori G (1996) Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria. J Photochem Photobiol B 32:153–157

    Article  CAS  PubMed  Google Scholar 

  8. Merchat M, Spikes JD, Bertoloni G, Jori G (1996) Studies on the mechanism of bacteria photosensitization by meso-substituted cationic porphyrins. J Photochem Photobiol B 35:149–157

    Article  CAS  PubMed  Google Scholar 

  9. Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown ST (1996) Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria. J Photochem Photobiol B 32:159–164

    Article  CAS  PubMed  Google Scholar 

  10. Nitzan Y, Ashkenazi H (1999) Photoinactivation of Deinococcus radiodurans: An unusual Gram-positive microorganism. Photochem Photobiol 69:505–510

    Article  CAS  Google Scholar 

  11. Valduga G, Breda B, Giacometti GM, Jori G, Reddi E (1999) Photosensitization of wild and mutant strains of Escherichia coli by meso-tetra (N-methyl-4-pyridyl)porphine. Biochem Biophys Res Commun 256:84–88

    Article  CAS  PubMed  Google Scholar 

  12. Nitzan Y, Ashkenazi H (2001) Photoinactivation of Acinetobacter baumannii and Escherichia coli B by a cationic hydrophilic porphyrin at various light wavelengths. Curr Microbiol 42:408–414

    Article  CAS  PubMed  Google Scholar 

  13. Yu X, Egelman EH (1993) The LexA repressor binds within the deep helical groove of the activated RecA filament. J Mol Biol 231:29–40

    Article  CAS  PubMed  Google Scholar 

  14. Kurumizaka H, Aihara H, Ikawa S, Kashima T, Bazemore LR, Kawasaki K, et al. (1996) A possible role of the C-terminal domain of the RecA protein. A gateway model for double-stranded DNA binding. J Biol Chem 271:33515–33524

    CAS  PubMed  Google Scholar 

  15. Williams RC, Spengler SJ (1986) Fibers of RecA protein and complexes of RecA protein and single-stranded phi X174 DNA as visualized by negative-stain electron microscopy. J Mol Biol 187:109–118

    Article  CAS  PubMed  Google Scholar 

  16. Bryant FR, Taylor AR, Lehman IR (1985) Interaction of the recA protein of Escherichia coli with single-stranded DNA. J Biol Chem 260:1196–1202

    CAS  PubMed  Google Scholar 

  17. Levin-Zaidman S, Frenkiel-Krispin D, Shimoni E, Sabanay I, Wolf SG, Minsky A (2000) Ordered intracellular RecA-DNA assemblies: a potential site of in vivo RecA-mediated activities. Proc Natl Acad Sci U S A 97:6791–6796

    Article  CAS  PubMed  Google Scholar 

  18. Yu X, Egelman EH (1992) Structural data suggest that the active and inactive forms of the RecA filament are not simply interconvertible. J Mol Biol 227:334–346

    Article  CAS  PubMed  Google Scholar 

  19. Ogawa T, Yu X, Shinohara A, Egelman EH (1993) Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259:1896–1899

    CAS  PubMed  Google Scholar 

  20. Egelman EH, Yu X (1989) The location of DNA in RecA-DNA helical filaments. Science 245:404–407

    CAS  PubMed  Google Scholar 

  21. Palmen R, Vosman B, Kok R, van der Zee JR, Hellingwerf KJ (1992) Characterization of transformation-deficient mutants of Acinetobacter calcoaceticus. Mol Microbiol 6:1747–1754

    CAS  PubMed  Google Scholar 

  22. Wilson K. (1998) Preparation of genomic DNA from bacteria. In: Ausubel F, Brent R, Kingston R, Moore P, Seidman F, Smith J, et al. (eds) Current protocols in molecular biology, vol. 1. New York, NY: Wiley, pp 241–245

    Google Scholar 

  23. Sambrook J, Russell D, Sambrook J (2001) Molecular cloning: A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press

    Google Scholar 

  24. Harlow E, Lane D (1998) Antibodies: A laboratory manual. New York, NY: Cold Spring Harbor Laboratory Press

    Google Scholar 

  25. Ashkenazi H, Malik Z, Harth Y, Nitzan Y (2003) Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light. FEMS Immunol Med Microbiol 35:17–24

    CAS  PubMed  Google Scholar 

  26. Nitzan Y, Shainberg B, Malik Z (1989) The mechanism of photodynamic inactivation of S. aureus by deuteroporphyrin. Curr Microbiol 19:265–269

    Article  CAS  Google Scholar 

  27. Nir U, Ladan H, Malik Z, Nitzan Y (1991) In vivo effects of porphyrins on bacterial DNA. J Photochem Photobiol B 11:295–306

    Article  CAS  PubMed  Google Scholar 

  28. Ashkenazi H, Nitzan Y, Gal D (2003) Photodynamic effects of antioxidant substituted porphyrin photosensitizers on gram-positive and -negative bacterial. Photochem Photobiol 77:186–191

    Article  CAS  PubMed  Google Scholar 

  29. Salmon-Divon M, Nitzan Y, Malik Z (2004) Mechanistic aspects of Escherichia coli photodynamic inactivation by cationic tetra-meso(N-methylpyridyl)porphine. Photochem Photobiol Sci 3:423–429

    Article  CAS  PubMed  Google Scholar 

  30. Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC (2001) Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158:41–64

    CAS  PubMed  Google Scholar 

  31. Levin-Zaidman S, Englander J, Shimoni E, Sharma SK, Minton KW, Minsky A (2003) Ringlike structure of Deinoccus radiodurans genome: A key to radioresistance? Science 299:254–256

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the Health Sciences Research Center Funds (to Y.N.) and in part by the Rappaport Foundation for Medical Microbiology (to Y.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeshayahu Nitzan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashkenazi, H., Pechatnikov, I. & Nitzan, Y. Low-Intensity Photosensitization May Enhance RecA Production. Curr Microbiol 52, 317–323 (2006). https://doi.org/10.1007/s00284-005-0323-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-005-0323-4

Keywords

Navigation