Advertisement

Current Microbiology

, Volume 52, Issue 3, pp 197–203 | Cite as

Identification of AHBA Biosynthetic Genes Related to Geldanamycin Biosynthesis in Streptomyces hygroscopicus 17997

  • Weiqing He
  • Linzhuan Wu
  • Qunjie Gao
  • Yu Du
  • Yiguang Wang
Article

Abstract

To clone and study the geldanamycin biosynthetic gene cluster in Streptomyces hygroscopicus 17997, we designed degenerate primers based on the conserved sequence of the ansamycin 3-amino-5-hydroxybenzoic acid (AHBA) synthase gene. A 755-bp polymerase chain reaction product was obtained from S. hygroscopicus 17997 genomic DNA, which showed high similarity to ansamycin AHBA synthase genes. Through screening the cosmid library of S. hygroscopicus 17997, two loci of separated AHBA biosynthetic gene clusters were discovered. Comparisons of sequence homology and gene organization indicated that the two AHBA biosynthetic gene clusters could be divided into a benzenic and a naphthalenic subgroup. Gene disruption demonstrated that the benzenic AHBA gene cluster is involved in the biosynthesis of geldanamycin. However, the naphthalenic AHBA genes in the genome of Streptomyces hygroscopicus 17997 could not complement the deficiency of the benzenic AHBA genes. This is the first report on the AHBA biosynthetic gene cluster in a geldanamycin-producing strain.

Keywords

Biosynthetic Gene Biosynthetic Gene Cluster Rifamycin Geldanamycin BamHI Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This work was supported by a grant from the National Department of Sciences and Technology under Preliminary Basic Research 973 project in 2001 (N0.2001CCA00500).

Literature Cited

  1. 1.
    Arakawa K, Muller R, Mahmud T, Yu TW, Floss HG (2002) Characterization of the early stage aminoshikimate pathway in the formation of 3-amino-5-hydroxybenzoic acid: the RifN protein specifically converts kanosamine into kanosamine 6-phosphate. J Am Chem Soc 124:10644–10645CrossRefPubMedGoogle Scholar
  2. 2.
    August PR, Tang L, Yoon YJ, Ning S, Muller R, Yu TW, Taylor M, Hoffmann D, Kim CG, Zhang X, Hutchinson CR, Floss HG (1998) Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem Biol 5:69–79CrossRefPubMedGoogle Scholar
  3. 3.
    Becker AM, Herlt AJ, Hilton GL, Kibby JJ, Rickards RW (1983) 3-Amino-5-hydroxybenzoic acid in antibiotic biosynthesis. VI. Directed biosynthesis studies with ansamycin antibiotics. J Antibiot (Tokyo) 36:1323–1328Google Scholar
  4. 4.
    Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49CrossRefPubMedGoogle Scholar
  5. 5.
    Chen S, Von Bamberg D, Hale V, Breuer M, Hardt B, Muller R, Floss HG, Reynolds KA, Leistner E (1999) Biosynthesis of ansatrienin (mycotrienin) and naphthomycin identification and analysis of two separate biosynthetic gene clusters in Streptomyces collinus Tü 1892. Eur J Biochem 261:98–107PubMedGoogle Scholar
  6. 6.
    DeBoer C, Meulman PA, Wnuk RJ, Peterson DH (1970) Geldanamycin, a new antibiotic. J Antibiot (Tokyo) 23:442–447Google Scholar
  7. 7.
    Degwert U, van Hulst R, Pape H, Herrold RE, Beale JM, Keller PJ, Lee JP, Floss HG (1987) Studies on the biosynthesis of the alpha-glucosidase inhibitor acarbose: valienamine, a mC7N unit not derived from the shikimate pathway. J Antibiot (Tokyo) 40:855–861Google Scholar
  8. 8.
    Gao HY, Wang YG, Gao QJ, Shang GD, Sun GZ, Yang Y (2003) Establishment of gene transduction system in geldanamycin producer-Streptomyces hygroscopicus 17997 and its application for gene disruption experiment. Chinese J Biotech 19:407–411Google Scholar
  9. 9.
    Gao QJ, Shang GD, Wang YG, Tao PZ, Luo ZX, Yao TJ (2002) Cloning and analysis of geldanamycin biosynthetic genes from S. hygroscopicus 17997. Chinese J Antibiot 27:13–17Google Scholar
  10. 10.
    Ghisalba O, Nüesch J (1981) Genetic approach to the biosynthesis of the rifamycin-chromophore in Nocardia mediterranei. IV, identification of 3-amino-5-hydroxybenzoic acid as a direct precursor of the seven-carbon amino starter-unit. J Antibiot (Tokyo) 34:64–71Google Scholar
  11. 11.
    Guo J, Frost JW (2002) Biosynthesis of 1-deoxy-1-imino-D-erythrose 4-phosphate: a defining metabolite in the aminoshikimate pathway. J Am Chem Soc 124:528–529PubMedGoogle Scholar
  12. 12.
    Guo J, Frost JW (2002) Kanosamine biosynthesis: a likely source of the aminoshikimate pathway’s nitrogen atom. J Am Chem Soc 124:10642–10643PubMedGoogle Scholar
  13. 13.
    Hatano K, Akiyama S, Asai M, Rickards RW (1982) Biosynthetic origin of aminobenzenoid nucleus (C7N-unit) of ansamitocin, a group of novel maytansinoid antibiotics. J Antibiot (Tokyo) 35:1415–1417Google Scholar
  14. 14.
    Higashide E, Asai M, Ootsu K, Tanida S, Kozai Y, Hasegawa T, Kishi T, Sugino Y, Yoneda M (1977) Ansamitocin, a group of novel maytansinoid antibiotics with antitumour properties from Nocardia. Nature 270:721–722CrossRefPubMedGoogle Scholar
  15. 15.
    Kaur H, Cortes J, Leadlay P, Lal R (2001) Cloning and partial characterization of the putative rifamycin biosynthetic gene cluster from the Actinomycete Amycolatopsis mediterranei DSM 46095. Microbiol Res 156:239–246PubMedGoogle Scholar
  16. 16.
    Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. Norwich: The John Innes FoundationGoogle Scholar
  17. 17.
    Kim CG, Kirschning A, Bergon P, Zhou P, Su E, Sauerbrei B, Ning S, Ahn Y, Breuer M, Leistner E, Floss HG (1996) Biosynthesis of 3-amino-5-hydroxybenzoic acid, the precursor of mC7N units in ansamycin antibiotics. J Am Chem Soc 118:7486–7491Google Scholar
  18. 18.
    Kim CG, Yu TW, Fryhle CB, Handa S, Floss HG (1998) 3-Amino-5-hydroxybenzoic acid synthase, the terminal enzyme in the formation of the precursor of mC7N units in rifamycin and related antibiotics. J Biol Chem 273:6030–6040PubMedGoogle Scholar
  19. 19.
    Mahr K, van Wezel GP, Svensson C, Krengel U, Bibb MJ, Titgemeyer F (2000) Glucose kinase of Streptomyces coelicolor A3 (2): large-scale purification and biochemical analysis. Antonie van Leeuwenhoek 78:253–261CrossRefPubMedGoogle Scholar
  20. 20.
    Mo HB, Bai LQ, Wang SL, Yang KQ (2004) Construction of efficient conjugal plasmids between Escherichia coli and streptomycetes. Chinese J Biot 20:662–666Google Scholar
  21. 21.
    Neckers L (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8:55–61CrossRefGoogle Scholar
  22. 22.
    Oppolzer W, Prelog V (1973) The constitution and configuration of rifamycins B, O, S and SV. Helv Chim Acta 56:287–314Google Scholar
  23. 23.
    Rascher A, Hu Z, Viswanathan N, Schirmer A, Reid R, Nierman WC, Lewis M, Hutchinson CR (2003) Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602. FEMS Microbiol Lett 218:223–230CrossRefPubMedGoogle Scholar
  24. 24.
    Richardson MA, Kuhstoss S, Solenberg P, Schaus NA, Rao RN (1987) A new shuttle cosmid vector, pKC505, for Streptomycetes: its use in the cloning of three different spiramycin-resistance genes from a Streptomyces ambofaciens library. Gene 61:231–241CrossRefPubMedGoogle Scholar
  25. 25.
    Shibata M, Hasegawa T, Higashide E (1971) Tolypomycin, a new antibiotic I. Streptomyces tolypophorus nov. sp, a new antibiotic, tolypomycin-producer. J Antibiot (Tokyo) 24:810–816Google Scholar
  26. 26.
    Williams TH (1975) Naphthomycin, a novel ansa macrocyclic antimetabolite. Proton NMR spectra and structure elucidation using lanthanide shift reagent. J Antibiot (Tokyo) 28:85–86Google Scholar
  27. 27.
    Wu TS, Duncan J, Tsao SW, Chang CJ, Keller PJ, Floss HG (1987) Biosynthesis of the ansamycin antibiotic ansatrienin (mycotrienin) by Streptomyces collinus. J Nat Prod 50:108–118CrossRefPubMedGoogle Scholar
  28. 28.
    Xue Y, Zhao L, Liu HW, Sherman DH (1998) A gene clusters for macrolide antibiotic biosynthesis in Streptomyces venezulae: architecture of metabolic diversity. Proc Natl Acad Sci USA 95:12111–12116PubMedGoogle Scholar
  29. 29.
    Yu TW, Bai L, Clade D, Hoffmann D, Toelzer S, Trinh KQ, Xu J, Moss SJ, Leistner E, Floss HG (2002) The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci U S A 99:7968–7973PubMedGoogle Scholar
  30. 30.
    Yu TW, Muller R, Muller M, Zhang X, Draeger G, Kim CG, Leistner E, Floss HG (2001) Mutational analysis and reconstituted expression of the biosynthetic genes involved in the formation of 3-amino-5-hydroxybenzoic acid, the starter unit of rifamycin biosynthesis in Amycolatopsis mediterranei S699. J Biol Chem 276:12546–12555PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Weiqing He
    • 1
  • Linzhuan Wu
    • 1
  • Qunjie Gao
    • 1
  • Yu Du
    • 1
  • Yiguang Wang
    • 1
  1. 1.Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences, Peking Union Medical CollegeChina

Personalised recommendations