Skip to main content
Log in

Genetic Variation in Clones of Pseudomonas pseudoalcaligenes After Ten Months of Selection in Different Thermal Environments in the Laboratory

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The random amplification of polymorphic DNA (RAPD) method was used to examine genetic variation in experimental clones of Pseudomonas pseudoalcaligenes in two experimental groups, as well as their common ancestor. Six clones derived from a single colony of P. pseudoalcaligenes were cultured in two different thermal regimes for 10 months. Three clones in the Control group were cultured at constant temperature of 35°C and another three clones in the High Temperature (HT) group were propagated at incremental temperature ranging from 41 to 47°C for 10 months. A total of 45 RAPD primers generated 146 polymorphic markers. Analysis of molecular variance (AMOVA) revealed mild (11%) but significant (P < 0.001) genetic difference between the Control and the HT clones. Phylogenetic analysis based on pairwise genetic distances showed that the HT clones were more divergent from the ancestor and from each other than the Control clones, implying that the HT clones of P. pseudoalcaligenes may have evolved faster than the Control clones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Literature Cited

  1. FM Ausubel R Brent RE Kingston DD Moore JG Seidman JA Smith et al. (1992) Short protocols in molecular biology Greene Publishing Associates/Wiley New York

    Google Scholar 

  2. AF Bennett KM Dao RE Lenski (1990) ArticleTitleRapid evolution in response to high-temperature selection Nature 346 79–81 Occurrence Handle10.1038/346079a0 Occurrence Handle1:STN:280:By%2BA3cbpsl0%3D Occurrence Handle2195353

    Article  CAS  PubMed  Google Scholar 

  3. AF Bennett RE Lenski JE Mittler (1992) ArticleTitleEvolutionary adaptation to temperature. I. Fitness responses of Escherichia coli to changes in its thermal environments Evolution 46 16–30

    Google Scholar 

  4. AM Bronikowski AF Bennett RE Lenski (2001) ArticleTitleEvolutionary adaptation to temperature. VIII. Effects of temperature on growth rate in natural isolates of Escherichia coli and Salmonella enterica from different thermal environments Evolution 55 33–40 Occurrence Handle1:STN:280:DC%2BD3M7mt1Gmuw%3D%3D Occurrence Handle11263744

    CAS  PubMed  Google Scholar 

  5. JJ Bull MR Badgett HA Wichman JP Huelsenbeck DM Hillis A Gulati et al. (1997) ArticleTitleExceptional convergent evolution in a virus Genetics 147 1497–1507 Occurrence Handle1:STN:280:DyaK1c%2Fnt1Cktg%3D%3D Occurrence Handle9409816

    CAS  PubMed  Google Scholar 

  6. L Chao C Vargas BB Spear EC Cox (1983) ArticleTitleTransposable elements as mutator genes in evolution Nature 303 633–635 Occurrence Handle10.1038/303633a0 Occurrence Handle1:CAS:528:DyaL3sXks1Giur8%3D Occurrence Handle6304533

    Article  CAS  PubMed  Google Scholar 

  7. G Damiani P Amedeo C Bandi R Fani D Bellizzi V Sgaramella (1996) Bacteria identification by PCR-based techniques KW Adolph (Eds) Microbial genome methods CRC Press Boca Raton, FL 167–178

    Google Scholar 

  8. P Desjardins B Picard B Kaltenbock J Elion E Denamur (1995) ArticleTitleSex in Escherichia coli does not disrupt the clonal structure of the population: evidence from random amplified polymorphic DNA and restriction-fragment-length polymorphism J Mol Evol 41 440–448

    Google Scholar 

  9. L Excoffier PE Smouse JM Quattro (1992) ArticleTitleAnalysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data Genetics 131 479–491 Occurrence Handle1:CAS:528:DyaK38XlsVCntro%3D Occurrence Handle1644282

    CAS  PubMed  Google Scholar 

  10. FW Fitch E Margoliash (1967) ArticleTitleConstruction of phylogenetic trees Science 155 279–284 Occurrence Handle1:CAS:528:DyaF2sXnt1Gnsw%3D%3D Occurrence Handle5334057

    CAS  PubMed  Google Scholar 

  11. BG Hall (1999) ArticleTitleSpectra of spontaneous growth-dependent and adaptive mutations at ebgR J Bacteriol 181 1149–1155 Occurrence Handle1:CAS:528:DyaK1MXhsV2ru7c%3D Occurrence Handle9973340

    CAS  PubMed  Google Scholar 

  12. AA Hoffmann PA Parsons (1991) Evolutionary genetics and environmental stress Oxford University Press New York

    Google Scholar 

  13. DR Huff R Peakall PE Smouse (1993) ArticleTitleRAPD variation within and among natural populations of outcrossing buffalograss [Buchole dactyloides (Nutt.) Engelm.] Theor Appl Genet 86 927–934

    Google Scholar 

  14. C Jaggi T Wirth B Baur (2000) ArticleTitleGenetic variability in subpopulations of the asp viper (Vipera aspis) in the Swiss Jura mountains: implications for a conservation strategy Biol Conserv 94 69–77 Occurrence Handle10.1016/S0006-3207(99)00162-7

    Article  Google Scholar 

  15. RE Lenski AF Bennett (1993) ArticleTitleEvolutionary responses of Escherichia coli to thermal stress Am Nat 142 S47–S64 Occurrence Handle10.1086/285522

    Article  Google Scholar 

  16. JA Lindsay (1995) ArticleTitleIs thermophily a transferable property in bacteria? Crit Rev Microbiol 21 165–174 Occurrence Handle1:STN:280:BymC3MvkvVc%3D Occurrence Handle8845061

    CAS  PubMed  Google Scholar 

  17. SH Muller M Fischer (2001) ArticleTitleGenetic structure of the annual weed Senecio vulgaris in relation to habitat type and population size Mol Ecol 10 17–28 Occurrence Handle10.1046/j.1365-294X.2001.01169.x Occurrence Handle11251783

    Article  PubMed  Google Scholar 

  18. M Nei WH Li (1979) ArticleTitleMathematical model for studying genetic variation in terms of restriction endonucleases Proc Natl Acad Sci USA 76 5269–5273 Occurrence Handle1:CAS:528:DyaL3cXitVWn Occurrence Handle291943

    CAS  PubMed  Google Scholar 

  19. D Paffetti C Scotti S Gnocchi S Fancelli M Bazzicalupo (1996) ArticleTitleGenetic diversity of an Italian Rhizobium meliloti population from different Medicago sativa varieties Appl Environ Microbiol 62 2279–2285

    Google Scholar 

  20. JA Rafalski (1997) Randomly amplified polymorphic DNA (RAPD) analysis G Caetano-Anolles PM Gresshoff (Eds) DNA markers Wiley-VCH New York 75–83

    Google Scholar 

  21. N Renders U Romling H Verbrugh A Van-Belkum (1996) ArticleTitleComparative typing of Pseudomonas aeruginosa by random amplification of polymorphic DNA or pulsed-field gel electrophoresis of DNA macrorestriction fragments J Clin Microbiol 34 3190–3195 Occurrence Handle1:CAS:528:DyaK2sXjs1Chtg%3D%3D Occurrence Handle8940470

    CAS  PubMed  Google Scholar 

  22. MM Riehle AF Bennett AD Long (2001) ArticleTitleGenetic architecture of thermal adaptation in Escherichia coli Proc Natl Acad Sci USA 98 525–530 Occurrence Handle10.1073/pnas.021448998 Occurrence Handle1:CAS:528:DC%2BD3MXnslKhug%3D%3D Occurrence Handle11149947

    Article  CAS  PubMed  Google Scholar 

  23. MM Riehle AF Bennett RE Lenski AD Long (2003) ArticleTitleEvolutionary changes in heat-inducible gene expression in lines of Escherichia coli adapted to high temperature Physiol Genomics 24 47–58

    Google Scholar 

  24. N Saitou M Nei (1987) ArticleTitleThe neighbor-joining method: a new method for reconstructing phylogenetic trees Mol Biol Evol 4 406–425 Occurrence Handle1:STN:280:BieC1cbgtVY%3D Occurrence Handle3447015

    CAS  PubMed  Google Scholar 

  25. B Shi X Xia (2003) ArticleTitleMorphological changes of Pseudomonas pseudoalcaligenes in response to temperature selection Curr Microbiol 46 120–123 Occurrence Handle10.1007/s00284-002-3824-4 Occurrence Handle1:CAS:528:DC%2BD3sXhtlOhs7k%3D Occurrence Handle12520367

    Article  CAS  PubMed  Google Scholar 

  26. B Shi X Xia (2003) ArticleTitleChanges in growth parameters of Pseudomonas pseudoalcaligenes after ten months culturing at increasing temperature FEMS Microbiol Ecol 45 127–134 Occurrence Handle10.1016/S0168-6496(03)00129-6 Occurrence Handle1:CAS:528:DC%2BD3sXlsVaju70%3D

    Article  CAS  Google Scholar 

  27. JWIM Simons (1982) ArticleTitleEffect of temperature on mutation in cultured human skin fibroblasts Mutat Res 92 417–426 Occurrence Handle1:STN:280:Bi2B3MbnvV0%3D Occurrence Handle7088011

    CAS  PubMed  Google Scholar 

  28. J Wery B Hidayat JEA Kieboom (2001) ArticleTitleAn insertion sequence prepares Pseudomonas putida S12 for severe solvent stress J Biol Chem 276 5700–5706 Occurrence Handle10.1074/jbc.M007687200 Occurrence Handle1:CAS:528:DC%2BD3MXhs1Kmtrs%3D Occurrence Handle11094055

    Article  CAS  PubMed  Google Scholar 

  29. HA Wichman MR Badgett LA Scott CM Boulianne JJ Bull (1999) ArticleTitleDifferent trajectories of parallel evolution during viral adaptation Science 285 422–424 Occurrence Handle10.1126/science.285.5426.422 Occurrence Handle1:CAS:528:DyaK1MXkvVGgur0%3D Occurrence Handle10411508

    Article  CAS  PubMed  Google Scholar 

  30. JG Williams AR Kubelik KJ Livak JA Rafalski SV Tingey (1990) ArticleTitleDNA polymorphisms amplified by arbitrary primers are useful as genetic markers Nucleic Acids Res 18 6531–6535 Occurrence Handle1:CAS:528:DyaK3MXjslWmsA%3D%3D Occurrence Handle1979162

    CAS  PubMed  Google Scholar 

  31. X Xia (2000) Data analysis in molecular biology and evolution Kluwer Academic Boston

    Google Scholar 

  32. X Xia T Wei Z Xie A Danchin (2002) ArticleTitleGenomic changes in nucleotide and dinucleotide frequencies in Pasteurella multocida cultured under high temperature Genetics 161 1385–1394 Occurrence Handle1:CAS:528:DC%2BD38XnsVCltbc%3D Occurrence Handle12196387

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by RGC grants from the Hong Kong Research Grant Council (HKU7265/00M, HKU7212/01M) to X.X. We thank S.G. Wu for providing the original strain, and R.B. Huey and A. Danchin for comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bihong Shi.

Appendix

Appendix

Fig. A1
figure 2

Banding patterns of RAPD amplifications of P. pseudoalcaligenes clones. M, λ DNA EcoRI/HindIII marker; C, the negative control; lanes 1 to 7, the clones A, C1, C2, C3, HT1, HT2, and HT3, respectively. The upper rows are primers used corresponding to the bands amplified.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, B., Xia, X. Genetic Variation in Clones of Pseudomonas pseudoalcaligenes After Ten Months of Selection in Different Thermal Environments in the Laboratory. Curr Microbiol 50, 238–245 (2005). https://doi.org/10.1007/s00284-004-4449-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-004-4449-6

Keywords

Navigation