Skip to main content
Log in

Efficient Transformation Procedure of a Newly Isolated Streptomyces sp. TN58 Strain Producing Antibacterial Activities

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A new aerobic Gram-positive bacterium designated TN58 producing antibacterial activities against Gram-positive and Gram-negative bacteria was isolated from Tunisian soil. The nucleotide sequence of the 16S rRNA gene (1516 bp) of the TN58 strain showed high similarity (96–98%) to the Streptomyces 16S rRNA genes, especially with that of Streptomyces lavendulae which produces the anti-tumor compound mitomycin C, and the cyclic peptide antibiotic, complestatin. Cultural characteristic studies, alignment data of the 16S rRNA gene, and analysis of the nucleotide sequence of a 2.2 kb genomic DNA fragment from TN58 strongly suggested that this strain could be an actinomycete and most probably belongs to the genus Streptomyces. Study of the influence of different nutritional compounds on antibiotic production showed that the highest antibacterial activities were obtained when glycerol at 1% (w/v) was used as sole carbon source in the presence of potassium. In analytical conditions, the application to supernatant culture of the TN58 strain of various extraction and purification steps led to the isolation of two pure active molecules having a retention time of 38.6 and 50.2 min, respectively. TN58 strain was untransformable with the Streptomyces cloning vector pIJ702 via classical polyethylene glycol (PEG) protoplast transformation and previously described Streptomyces electroporation procedures. Transformation was rendered possible by the electroporation technique only after utilization of a preculture medium without sucrose and a regeneration plate containing a low sucrose concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Literature Cited

  1. MJ Bibb JM Ward DA Hopwood (1978) ArticleTitleTransformation of plasmid DNA into Streptomyces at high frequency Nature 274 398–400 Occurrence Handle672966

    PubMed  Google Scholar 

  2. S Bonnassie JF Burini J Oreglia A Trautwetter JC Patte AM Sicard (1990) ArticleTitleTransfer of plasmid DNA to Brevibacterium lactofermentum by electrotransformation J Gen Microbiol 136 2107–2112 Occurrence Handle2269876

    PubMed  Google Scholar 

  3. WT Bradner (2001) ArticleTitleMitomycin C: a clinical update Cancer Treat Rev 27 35–50 Occurrence Handle10.1053/ctrv.2000.0202 Occurrence Handle11237776

    Article  PubMed  Google Scholar 

  4. JL Casas Lopez JA Sanchez Pérez JM Fernandez Sevilla FG Acién Fernandez E Molina Grima Y Clusti (2003) ArticleTitleProduction of lovastatin by Aspergillus terreus: effects of the C:N ratio and the principal nutrients on growth and metabolite production Enzyme Microb Tech 33 270–277 Occurrence Handle10.1016/S0141-0229(03)00130-3

    Article  Google Scholar 

  5. HT Chin BK Hubbard AN Shah J Bide RA Fredenburg CT Walsh et al. (2001) ArticleTitleMolecular cloning and sequence analysis of the complestatin biosynthetic gene cluster Proc Natl Acad Sci USA 98 8548–8553 Occurrence Handle10.1073/pnas.011593298 Occurrence Handle11447274

    Article  PubMed  Google Scholar 

  6. ST Crooke WT Bradner (1976) ArticleTitleMitomycin C: a review Cancer Treat Rev 3 121–139 Occurrence Handle786455

    PubMed  Google Scholar 

  7. WJ Dower JF Miller CW Ragsdale (1988) ArticleTitleHigh efficiency transformation of E. coli by high voltage electroporation Nucleic Acids Res 16 6127–6145 Occurrence Handle3041370

    PubMed  Google Scholar 

  8. U Edwards T Rogall H Bocker M Emde E Bottger (1989) ArticleTitleIsolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal DNA Nucleic Acids Res 17 7843–7853 Occurrence Handle2798131

    PubMed  Google Scholar 

  9. D Hanahan (1983) ArticleTitleStudies on transformation of Escherichia coli with plasmids J Mol Biol 166 557–580 Occurrence Handle6345791

    PubMed  Google Scholar 

  10. T Hata Y Sano R Sgawara A Matsumae K Kanamorei T Shima T Hoshi (1956) ArticleTitleMitomycin, a new antibiotic from Streptomyces J Antibiot 9 141–146 Occurrence Handle13385186

    PubMed  Google Scholar 

  11. DA Hopwood MJ Bibb KF Chater T Kieser CJ Bruton HM Kieser et al. (1985) Genetic manipulation of Streptomyces: a laboratory manual John Innes Foundation Norwich, UK

    Google Scholar 

  12. YS Hwang JY Lee ES Kim CY Choi (2001) ArticleTitleOptimization of transformation procedures in avermectin high-producing Streptomyces avermitilis Biotechnol Lett 23 457–462 Occurrence Handle10.1023/A:1010377219368

    Article  Google Scholar 

  13. GR Janssen MJ Bibb (1993) ArticleTitleDerivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies Gene 124 133–134 Occurrence Handle10.1016/0378-1119(93)90774-W Occurrence Handle8382652

    Article  PubMed  Google Scholar 

  14. E Katz CJ Thompson DA Hopwood (1983) ArticleTitleCloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans J Gen Microbiol 129 2703–2714 Occurrence Handle6313861

    PubMed  Google Scholar 

  15. T Kieser MJ Bibb MJ Buttner KF Chater DA Hopwood (2000) Practical Streptomyces genetics John Innes Foundation Norwich, UK

    Google Scholar 

  16. E Kuster S Williams (1964) ArticleTitleSelection of media for isolation of streptomycetes Nature 202 928–929 Occurrence Handle14190108

    PubMed  Google Scholar 

  17. Lechevalier HA, Williams ST, Sharpe ME, Holt JG (1989) The Actinomycetes: a practical guide to genetic identification of actinomycetes. In: Bergey’s manual of systematic bacteriology. Sydney: Williams & Wilkins, pp 2344–3330

  18. MP Lechevalier HA Lechevalier (1970) ArticleTitleChemical composition as a criterion in the classification of aerobic actinomycetes Int J Syst Bacteriol 20 435–443

    Google Scholar 

  19. C Mazy-Servais D Baczkowski J Dusart (1997) ArticleTitleElectroporation of intact cells of Streptomyces parvulus and Streptomyces vinaceus FEMS Microbiol Lett 151 135–138 Occurrence Handle10.1016/S0378-1097(97)00147-X Occurrence Handle9228745

    Article  PubMed  Google Scholar 

  20. A Mehling F Wehmeir W Piepersberg (1995) ArticleTitleNucleotide sequences of streptomycete 16S ribosomal DNA: towards a specific identification system for Streptomycetes using PCR Microbiology 141 2139–2147 Occurrence Handle7496525

    PubMed  Google Scholar 

  21. L Melloui R Ghorbel A Kammoun M Mezghani S Bejar (1996) ArticleTitleCharacterisation and molecular cloning of thermostable alpha-amylase from Streptomyces sp. TO1 Biotechnol Lett 18 809–814 Occurrence Handle10.1007/BF00127894

    Article  Google Scholar 

  22. M Okanishi K Suzuki H Umezawa (1974) ArticleTitleFormation and reversion of streptomycete protoplasts: cultural conditions and morphological study J Gen Microbiol 80 389–400 Occurrence Handle4207870

    PubMed  Google Scholar 

  23. J Pigac H Schrempf (1995) ArticleTitleA simple and rapid method of transformation of Streptomyces rimosus R6 and other Streptomycetes by electroporation Appl Environ Microbiol 61 352–356

    Google Scholar 

  24. J Sambrook EF Fritsch T Maniatis (1989) Molecular cloning: a laboratory manual EditionNumber2 Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY

    Google Scholar 

  25. F Sanger S Nicklen R Coulson (1977) ArticleTitleDNA sequencing with chain terminating inhibitors Proc J Natl Acad Sci USA 74 5463–5467

    Google Scholar 

  26. EB Shirling D Gottlieb (1966) ArticleTitleMethods of characterization of Streptomyces species Int J Syst Bacteriol 61 313–340

    Google Scholar 

  27. M Tomasz (1995) ArticleTitleMitomycin C: small, fast and deadly (but very selective) Chem Biol 2 575–579 Occurrence Handle10.1016/1074-5521(95)90120-5 Occurrence Handle9383461

    Article  PubMed  Google Scholar 

  28. CJ Thompson JM Ward DA Hopwood (1982) ArticleTitleCloning of antibiotic resistance and nutritional genes in streptomycetes J Gen Bacteriol 151 668–677

    Google Scholar 

  29. C Vilches C Mendez JA Hardisson Salas (1990) ArticleTitleBiosynthesis of oleandomycin by Streptomyces antibioticus: influence of nutritional conditions and development of resistance J Gen Microbiol 136 1447–1454 Occurrence Handle2262785

    PubMed  Google Scholar 

  30. ST Williams M Goodfellow G Alderson EM Wellington PH Sneath MJ Sacki (1983) ArticleTitleNumerical classification of Streptomyces and related genera J Gen Microbiol 129 1747–1813

    Google Scholar 

  31. A Wipat E Wellington V Sannders (1991) ArticleTitleStreptomyces marker plasmids for monitoring survival and spread of Streptomycetes in soil Appl Environ Microbiol 57 3322–3330 Occurrence Handle1781690

    PubMed  Google Scholar 

  32. F Wright MJ Bibb (1992) ArticleTitleCodon usage in the G + C-rich Streptomyces genome Gene 113 55–65 Occurrence Handle10.1016/0378-1119(92)90669-G Occurrence Handle1563633

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Tunisian government (Contract Programme CBS-LEMP). We are grateful to Dr. J.L. Pernodet (BGM Laboratory of the IGM Orsay, France) for providing DNA probes from S. ambofaciens and the M. luteus LB 14110 strain, and to Dr. A. Dhouib (CBS) for providing the four other indicator microorganisms. Thanks are also due to Mr. R. Rekik, Mr. R. Hmidi, Mr. E. Ben Messaoud, Dr. M. Ben Ali, and Dr. H. Chouayekh for their generous help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotfi Mellouli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mellouli, L., Karray-Rebai, I., Sioud, S. et al. Efficient Transformation Procedure of a Newly Isolated Streptomyces sp. TN58 Strain Producing Antibacterial Activities. Curr Microbiol 49, 400–406 (2004). https://doi.org/10.1007/s00284-004-4292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-004-4292-9

Keywords

Navigation