Skip to main content
Log in

The Cartesian Ovals

  • Article
  • Published:
The Mathematical Intelligencer Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Notes

  1. Descartes confusingly employs both letters and numbers to label points. Thus, for example, the line segment from the point 6 to the point R in the diagram will be denoted by 6R.

  2. We consider only circles or disks centered at the point 1, since the results for arbitrary (nonzero) centers are simply scaled/rotated versions of the resulting Minkowski products.

  3. The envelope of a variable circle whose center lies on the circumference of another circle and whose radius is proportional to the distance of its center from a fixed point is a pair of ovals of Descartes.

  4. The extended complex plane is the set of all finite complex values augmented by a single point \(\infty \) at infinity.

  5. For brevity, we consider problems that are rotationally symmetric about a certain axis; the wavefront surfaces are then completely characterized by planar sections.

  6. The name “caustic” is due to Ehrenfried Walther von Tschirnhaus, a contemporary of Leibniz and Newton, who investigated the use of mirrors to focus sunlight: the Latin and Greek roots of “caustic” mean capable of burning.

References

  1. J. Bernoulli. Lineæ cycloidales, evolutæ, ant-evolutæ, causticæ, anti-causticæ, peri-causticæ. Acta Eruditorum, May 1692.

  2. C. B. Boyer. History of Analytic Geometry. Dover (reprint), 2004.

  3. J.-C. A. Chastang and R. T. Farouki. The mathematical evolution of wavefronts. Optics and Photonics News 3 (1992), 20–23.

    Article  Google Scholar 

  4. J. L. Coolidge. A Treatise on the Circle and the Sphere. Clarendon Press, 1916.

    MATH  Google Scholar 

  5. R. Descartes. The Geometry of René Descartes. Translation by D. E. Smith and M. L. Latham of Descartes’s La Géométrie, with a facsimile of the first edition. Dover, 1954.

  6. R. Descartes. La Géométrie, nouvelle édition. Hermann, 1896.

  7. R. T. Farouki and J.-C. A. Chastang. Exact equations of “simple” wavefronts. Optik 91 (1992), 109–121.

    Google Scholar 

  8. R. T. Farouki, W. Gu, and H. P. Moon. Minkowski roots of complex sets. In Geometric Modeling and Processing 2000, pp. 287–300. IEEE Computer Society Press, 2000.

  9. R. T. Farouki and C. Y. Han. Solution of elementary equations in the Minkowski geometric algebra of complex sets. Advances in Computational Mathematics 22 (2005), 301–323.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. T. Farouki, H. P. Moon, and B. Ravani. Algorithms for Minkowski products and implicitly-defined complex sets. Advances in Computational Mathematics 13 (2000), 199–229.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. T. Farouki, H. P. Moon, and B. Ravani. Minkowski geometric algebra of complex sets. Geometriae Dedicata 85 (2001), 283–315.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. T. Farouki and H. Pottmann. Exact Minkowski products of \(N\) complex disks. Reliable Computing 8 (2002), 43–66.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Ferréol. Encyclopedia of Remarkable Mathematical Forms. Available at https://mathcurve.com/courbes2d.gb/descartes/descartes.shtml, 2017.

  14. F. Gomes Teixeira. Tratado de las Curvas Especiales Notables. Gaceta de Madrid, 1905.

  15. F. Gomes Teixeira. Traité des Courbes Spéciales Remarquables Planes et Gauches. Reprint of a French translation of [14] in three volumes. Chelsea, 1908.

  16. J. Harkness and F. Morley. A Treatise on the Theory of Functions. Macmillan, 1893.

  17. E. Hecht and A. Zajac. Optics. Addison-Wesley, 1974.

    Google Scholar 

  18. C. Huygens. Treatise on Light. Translation by Silvanus P. Thompson of Huygens’s 1690 Traité de la lumière. Dover, 1912.

  19. M. Klein. Mathematical Thought from Ancient to Modern Times. Oxford University Press, 1972.

    Google Scholar 

  20. D. F. Lawden. Elliptic Functions and Applications. Applied Mathematical Sciences, Volume 80. Springer, 1989.

  21. J. D. Lawrence. A Catalog of Special Plane Curves. Dover, 1972.

    MATH  Google Scholar 

  22. E. H. Lockwood. A Book of Curves. Cambridge University Press, 1967.

    MATH  Google Scholar 

  23. H. Minkowski. Volumen und Oberfläche. Mathematische Annalen 57 (1903), 447–495.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. E. Moore. Interval Analysis. Prentice-Hall, 1966.

    MATH  Google Scholar 

  25. T. Needham. Visual Complex Analysis. Clarendon Press, 1997.

    MATH  Google Scholar 

  26. G. Salmon. A Treatise on the Higher Plane Curves: Intended as a Sequel to A Treatise on Conic Sections. Reprint of the 1852 first edition. Chelsea, 1960.

  27. H. Schwerdtfeger. Geometry of Complex Numbers. Dover, 1979.

    MATH  Google Scholar 

  28. D. H. von Seggern. CRC Standard Curves and Surfaces. CRC Press, 1993.

    MATH  Google Scholar 

  29. C. H. Sisam. Review of Tratado de las Curvas Especiales Notables. Bulletin of the American Mathematical Society 13 (1907), 249–250.

    Article  MathSciNet  Google Scholar 

  30. O. N. Stavroudis. The Optics of Rays, Wavefronts, and Caustics. Academic Press, 1972.

    Google Scholar 

  31. J. Steiner. Geometrische Lehrsätze. Journal für die Reine und Angewandte Mathematik 32 (1846), 182–184.

    MathSciNet  Google Scholar 

  32. D. J. Struik. Lectures on Classical Differential Geometry. Dover, 1961.

    MATH  Google Scholar 

  33. B. Williamson. An Elementary Treatise on the Differential Calculus: Containing the Theory of Plane Curves with Numerous Examples. D. Appleton & Co., 1893.

  34. C. Zwikker. The Advanced Geometry of Plane Curves and Their Applications. Dover, 1963.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rida T. Farouki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farouki, R.T. The Cartesian Ovals. Math Intelligencer 44, 343–353 (2022). https://doi.org/10.1007/s00283-021-10149-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00283-021-10149-8

Navigation