Skip to main content

The Universal Aesthetics of Mathematics

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. A. Grothendieck. Hodge’s general conjecture is false for trivial reasons. Topology 8 (1969), 299–303.

    MathSciNet  Article  MATH  Google Scholar 

  2. G. H. Hardy. A Mathematician’s Apology. Cambridge University Press, 1940.

  3. P. Hoffman. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. Hyperion Books, 1998.

  4. S. G. B. Johnson and S. Steinerberger, The Aesthetic Psychology of Mathematics. arXiv:1711.08376, 2018.

  5. W. Kinderman. The Evolution and Structure of Beethoven’s “Diabelli” Variations. Journal of the American Musicological Society 35:2 (Summer, 1982), 306–328

  6. J. E. Littlewood. Littlewood’s Miscellany, edited and with a Foreword by Béla Bollobás. Cambridge University Press, 1986.

  7. M. Mazullo. Shostakovich’s Preludes and Fugues: Contexts, Style, Performance. Yale University Press, 2010.

    Book  Google Scholar 

  8. H. Poincaré. Notice sur Halphen. Journal de l’École Polytechnique 6 (1890), 143.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Steinerberger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Johnson, S.G.B., Steinerberger, S. The Universal Aesthetics of Mathematics. Math Intelligencer 41, 67–70 (2019). https://doi.org/10.1007/s00283-018-09857-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00283-018-09857-5