The Mathematical Intelligencer

, Volume 40, Issue 1, pp 59–67 | Cite as

On Models and Visualizations of Some Special Quartic Surfaces

  • David E. Rowe
Years Ago Jemma Lorenat, Editor
In 2015 the Phillips Collection in Washington, D.C., together with The Israel Museum in Jerusalem, cooperatively organized a special traveling exhibition entitled Man Ray—Human Equations: A Journey from Mathematics to Shakespeare. This novel effort combined three types of artifacts: mathematical models, photographs of them, and paintings by the surrealist artist Man Ray based on the photos he had taken earlier. The models themselves were located in Paris, whereas the paintings were made much later in another place and time. But let me just cite the words of Wendy Grossman, one of the curators who put this exhibition together: 1

Man Ray—Human Equations: A Journey from Mathematics to Shakespeare explores the intersection of art and science that defined a significant component of modern art at the beginning of the 20th century. Working in Hollywood in the late 1940s, Man Ray (American, 1890–1976) created the Shakespearean Equations, a series of paintings that he considered to be the...


  1. [Apery 2013]
    Apéry, François. Caron’s Wooden Mathematical Objects, online at:
  2. [Cayley 1871]
    Cayley, Arthur. On Plücker’s Models of Certain Quartic Surfaces, Proceedings of the London Mathematical Society, 3(1871): 281–285.Google Scholar
  3. [Clebsch 1872]
    Clebsch, Alfred. Zum Gedächtnis an Julius Plücker, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Band 16(1871): 1–40.Google Scholar
  4. [Coolidge 1945]
    Coolidge, Julian. A History of the Conic Sections and Quadric Surfaces, Oxford, Clarendon Press, 1945.Google Scholar
  5. [Fischer 1986]
    Fischer, Gerd, Hrsg. Mathematische Modelle, 2 Bde., Berlin: Akademie Verlag, 1986.Google Scholar
  6. [Grossman and Sebline 2015]
    Grossman, Wendy A., and Sebline, Edouard, eds. Man Ray. Human Equations: A Journey from Mathematics to Shakespeare, Jerusalem: The Israel Museum, 2015.Google Scholar
  7. [Hankins 1980]
    Hankins, Thomas. Sir William Rowan Hamilton, Baltimore: Johns Hopkins University Press, 1980.Google Scholar
  8. [Hilbert u. Cohn-Vossen 1932]
    Hilbert, David, und Cohn-Vossen, Stefan. Anschauliche Geometrie, Berlin: Julius Springer, 1932.Google Scholar
  9. [Hudson 1990]
    Hudson, Ronald W. H. T. Kummer’s Quartic Surface, Cambridge: Cambridge University Press, 1905; reprinted in 1990.Google Scholar
  10. [Klein 1870]
    Klein, Felix. Zur Theorie der Liniencomplexe des ersten und zweiten Grades, Mathematische Annalen 2(1870): 198–228.Google Scholar
  11. [Klein 1874]
    Klein, Felix. Ueber die Plückersche Komplexfläche, Mathematische Annalen 7(1874): 208–211.Google Scholar
  12. [Klein 1921, 1922, 1923]
    Klein, Felix. Gesammelte Mathematische Abhandlungen, 3 Bde., Berlin: Julius Springer, 1921, 1922, 1923.Google Scholar
  13. [Klein and Lie 1884]
    Klein, Felix, and Lie, Sophus. Ueber die Haupttangentencurven der Kummer’schen Fläche vierten Grades mit 16 Knotenpunkten, Mathematische Annalen 23(1884): 198–228.Google Scholar
  14. [MacCullagh 1830]
    MacCullagh, James. On the double refraction of light in a crystallized medium, according to the principles of Fresnel, Transactions of the Royal Irish Academy, 16(2)(1830): 6578.Google Scholar
  15. [Plücker 1868]
    Plücker, Julius. Neue Geometrie des Raumes gegründet auf die Betrachtung der geraden Linie als Raumelement, Erste Abteilung, Leipzig: Teubner, 1868.Google Scholar
  16. [Plücker 1869]
    Plücker, Julius. Neue Geometrie des Raumes gegründet auf die Betrachtung der geraden Linie als Raumelement, Zweite Abteilung, hrsg. F. Klein, Leipzig: Teubner, 1869.Google Scholar
  17. [Rohn 1877]
    Rohn, Karl. Drei Modelle der Kummer’schen Fläche, 3 S., Darmstadt: L. Brill, 1877.Google Scholar
  18. [Rohn 1879]
    Rohn, Karl. Transformation der hyperelliptischen Functionen p = 2 und ihre Bedeutung für die Kummer’sche Fläche, Mathematische Annalen 15(1879): 315–354.Google Scholar
  19. [Rowe 2018]
    Rowe, David E. Klein, Lie, and their early Work on Quartic Surfaces, Festschrift for Umberto Bottazzini, to appear in 2018.Google Scholar
  20. [Schilling 1911]
    Schilling, Martin, Hrsg. Katalog mathematischer Modelle fr den höheren mathematischen Unterricht, Leipzig: M. Schilling, 1911.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Johannes Gutenberg UniversityMainzGermany

Personalised recommendations