The Mathematical Intelligencer

, Volume 40, Issue 2, pp 10–15 | Cite as

Armies of Chess Queens

  • Martin F. van Bommel
  • Katie T. MacEachern


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. W. Rouse Ball, Mathematical Recreations and Essays, MacMillan and Company, New York, Fourth Edition, 1905.Google Scholar
  2. 2.
    R. A. Bosch, Peaceably coexisting armies of queens, Optima: Math. Prog. Soc. Newsletter, 62 (June 1999) 6–9.Google Scholar
  3. 3.
    R. A. Bosch, Armies of queens revisited, Optima: Math. Prog. Soc. Newsletter, 66 (Sept. 2000) 15.Google Scholar
  4. 4.
    M. Gardner, Chess queens and maximum unattacked cells, Math. Horizons, VII(2) (Nov. 1999) 12–16.Google Scholar
  5. 5.
    E. J. Hoffman, J. C. Loessi, and R. C. Moore, Constructions for the solution of the m queens problem, Math. Magazine, 42(2) (March 1969) 66–72.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    D. Knuth, The Art of Computer Programming, Volume 4, Fascicle 6: Satisfiability, Pearson Education, Boston, 2015.Google Scholar
  7. 7.
    B. M. Smith, K. E. Petrie, and I. P. Gent, Models and symmetry breaking for “peaceable armies of queens,” CPAIOR 2004: First International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Nice, France. Springer Lecture Notes in Computer Science 3011 (2004) 271–286.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics Statistics and Computer ScienceSt. Francis Xavier UniversityAntigonishCanada

Personalised recommendations