The Mathematical Intelligencer

, Volume 40, Issue 1, pp 55–58 | Cite as

A Projective Analogue of Napoleon’s and Varignon’s Theorems

Mathematical Gems and Curiosities Sergei Tabachnikov, Editor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Berlekamp, E. R., Gilbert, E. N., and Sinden, F. W. (1965). A polygon problem. American Mathematical Monthly, 72(3):233–241.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Grünbaum, B. (2001). A relative of “Napoleon’s theorem.” Geombinatorics, 10:116–121.MathSciNetMATHGoogle Scholar
  3. [3]
    Le, Q.-N. (2016). A family of projectively natural polygon iterations. arXiv preprint arXiv:1602.02699.
  4. [4]
    Ovsienko, V., Schwartz, R., and Tabachnikov, S. (2010). The pentagram map: a discrete integrable system. Communications in Mathematical Physics, 299(2):409–446.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    Schwartz, R. (1992). The pentagram map. Journal of Experimental Mathematics, 1:85–90MathSciNetMATHGoogle Scholar
  6. [6]
    Schwartz, R. (2017). The projective heat map. AMS Mathematical Surveys and Monographs, Vol. 219.Google Scholar
  7. [7]
    Tabachnikov, S. (1999). Fagnano orbits of polygonal dual billiards. Geometriae Dedicata, 77(3):279–286.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Terras, A. (1999). Fourier analysis on finite groups and applications. Number 43. Cambridge University Press.Google Scholar
  9. [9]
    Troubetzkoy, S. (2009). Dual billiards, Fagnano orbits, and regular polygons. American Mathematical Monthly, 116(3):251–260.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Department of MathematicsBrown UniversityProvidenceUSA

Personalised recommendations