Advertisement

The Mathematical Intelligencer

, Volume 39, Issue 1, pp 27–40 | Cite as

How Efficiently Can One Untangle a Double-Twist? Waving is Believing!

  • David Pengelley
  • Daniel Ramras
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

283_2016_9690_MOESM1_ESM.mp4 (85.6 mb)
The Belt Trick (mp4 87623 KB)
283_2016_9690_MOESM2_ESM.mp4 (67.1 mb)
The Candle Dance (mp4 68667 KB)
283_2016_9690_MOESM3_ESM.mp4 (3.8 mb)
The Double-Tipping Nullhomotopy (mp4 3863 KB)
283_2016_9690_MOESM4_ESM.mp4 (174.6 mb)
Waving is Believing (mp4 178806 KB)

Simultaneous Waving (mp4 15958 KB)

283_2016_9690_MOESM6_ESM.zip (12.8 mb)
Rotations 2.0 (Windows) (zip 13075 KB)
283_2016_9690_MOESM7_ESM.zip (15.1 mb)
Rotations 2.0 (Linux) (zip 15431 KB)
283_2016_9690_MOESM8_ESM.zip (16.5 mb)
Rotations 2.0 (Mac) (zip 16868 KB)

References

  1. [1]
    John H. Conway, Derek A. Smith, On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry, A. K. Peters, Natick, MA, 2003.Google Scholar
  2. [2]
    Charles Curtis, Linear Algebra, Springer, New York, 1993.Google Scholar
  3. [3]
    Antonio Martos de la Torre, Dirac’s Belt Trick for Spin 1/2 Particle, http://vimeo.com/62228139, accessed October 2, 2016.
  4. [4]
    Greg Egan, Dirac Belt Trick, http://www.gregegan.net/APPL ETS/21/21.html, accessed October 2, 2016.
  5. [5]
    Leonhard Euler, Formulae generales pro translatione quacunque corporum rigidorum (General formulas for the translation of arbitrary rigid bodies), E478, Novi Commentarii Academiae Scientiarum Petropolitanae 20 (1776), 189–207; http://eulerarch ive.maa.org/, accessed October 2, 2016.
  6. [6]
    Euler’s Rotation Theorem, Wikipedia, http://en.wikipedia.org/wiki/Euler’s_rotation_theorem, accessed October 2, 2016.
  7. [7]
    Euler’s Theorem␣(Rotation), Citizendium, http://en.citizendium.org/wiki/Euler’s_theorem_(rotation), accessed October 2, 2016.
  8. [8]
    Richard P. Feynman, Steven Weinberg, Elementary Particles and the Laws of Physics: The 1986 Dirac Memorial Lectures; Lecture Notes Compiled by Richard MacKenzie and Paul Doust, Cambridge University Press, New York, Cambridge, 1987.Google Scholar
  9. [9]
    George Francis, Louis Kauffman, Air on the Dirac strings, in Mathematical Legacy of Wilhelm Magnus, Contemporary Mathematics 169 (1994), 261–276.Google Scholar
  10. [10]
    George Francis et al, Air on the Dirac Strings, movie, University of Illinois, Chicago, 1993, http://www.evl.uic.edu/hypercomplex/html/dirac.html, http://www.evl.uic.edu/hypercomplex/movies/dirac.mpg, https://www.youtube.com/watch?v=CYBqIRM8GiY, accessed October 2, 2016.
  11. [11]
    Alfred Gray, Elsa Abbena, Simon Salamon, Modern Differential Geometry of Curves and Surfaces with Mathematica, Chapman & Hall CRC, Boca Raton, FL, 2006.Google Scholar
  12. [12]
    Jean Gallier, Geometric Methods and Applications: For Computer Science and Engineering, Springer, New York, 2001.Google Scholar
  13. [13]
    Andrew J. Hanson, Visualizing Quaternions, Elsevier, 2006.Google Scholar
  14. [14]
    John Hart, George Francis, Louis Kauffman, Visualizing quaternion rotation, ACM Transactions on Graphics 13 (1994), 256–276.Google Scholar
  15. [15]
    Morris Hirsch, Differential Topology, Springer, New York, 1997.Google Scholar
  16. [16]
    Charles W. Misner, Kip S. Thorne, John Archibald Wheeler, Gravitation, W. H. Freeman, San Francisco, 1973.Google Scholar
  17. [17]
    Orientation Entanglement, Wikipedia, http://en.wikipedia.org/wiki/Orientation_entanglement, accessed October 2, 2016.
  18. [18]
    Robert A. (Bob) Palais, Bob Palais’ Belt Trick, Plate Trick, Tangle Trick Links, http://www.math.utah.edu/~palais/links.html, http://www.math.utah.edu/~palais/JavaBeltPlateQuat/belt.html, http:// www.math.utah.edu/~palais/bp.html, accessed October 2, 2016.
  19. [19]
    David Pengelley, Daniel Ramras, The double-tipping nullhomotopy, http://math.iupui.edu/~dramras/double-tip.html, accessed October 2, 2016. Also at https://www.youtube.com/playlist?list=PLAfnEXvHU52ldJaOye-8kZV_C1CjxGx2C.
  20. [20]
    Roger Penrose, Wolfgang Rindler, Spinors and Space-Time: Volume 1, Cambridge University Press, 1984.Google Scholar
  21. [21]
    Donnelly Phillips, Mae Markowski, Joseph Frias, Mark Boahen, Virtual Reality Experience of Nullhomotopy in SO(3,R) , Oculus Rift App, George Mason University Experimental Geometry Lab, http://meglab.wikidot.com/visualization, accessed October 2, 2016.
  22. [22]
    Plate Trick, Wikipedia, http://en.wikipedia.org/wiki/Plate_trick, accessed October 2, 2016.
  23. [23]
    Quaternions and Spatial Rotation, Wikipedia, http://en.wikipedia. org/wiki/Quaternions_and_spatial_rotation, accessed October 2, 2016.
  24. [24]
    Tari Piring - Indonesian Candle Dance, https://www.youtube.com/watch?v=0FQsisO1gOY, accessed October 2, 2016.

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.New Mexico State UniversityLas CrucesUSA
  2. 2.Indiana University - Purdue University IndianapolisIndianapolisUSA

Personalised recommendations