Mathematics and Flamenco: An Unexpected Partnership

This is a preview of subscription content, access via your institution.

References

  1. [1]

    M. Ascher (2000). Ethnomathematics for the geometry curriculum. MAA NOTES, 59–63.

  2. [2]

    B. Barton. Making sense of ethnomathematics: ethnomathematics is making sense. Educational Studies in Mathematics, 31(1–2), (1996), 201–233.

  3. [3]

    J. Colannino, M. Damian, F. Hurtado, J. Iacono, H. Meijer, S. Ramaswami, G. T. Toussaint. An \(O(n \log n)\)-time algorithm for the restriction scaffold assignment problem. Journal of Computational Biology, 13(4), (2006), 979–989.

  4. [4]

    C. Cronin. Concepts of Melodic Similarity in Music-Copyright Infringement Suits. Computing in Musicology. Walter B. Hewlett, Eleanor Selfridge-Field, eds. Cambridge: MIT Press (1998).

  5. [5]

    J. M. Díaz-Báñez, F. J. Escobar-Borrego. La modulación tonal en las formas musicales del Flamenco: propiedades de preferencia e hibridación armónica. Itamar. Revista de Investigación Musical: Territorios para el Arte, (2010), 261–266.

  6. [6]

    J. M. Díaz-Báñez, G. Farigu, F. Gómez, D. Rappaport, G. T. Toussaint. El Compás Flamenco: A Phylogenetic Analysis, Proceedings of Bridges: Mathematical Connections in Art, Music, and Science, Winfield, KS, (2004), 61–70.

  7. [7]

    J. M. Díaz-Báñez , G. Farigu, F. Gómez, D. Rappaport, G. T. Toussaint. Similaridad y evolución en la rítmica del flamenco: una incursión de la matemática computacional. La Gaceta de la Real Sociedad Matemática Española, 8(2), (2005), 489–509.

  8. [8]

    F. Gómez, J. M. Díaz-Báñez, E. Gómez, E., J. Mora. Flamenco music and its Computational Study. In Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture (2014) (pp. 119–126). Tessellations Publishing.

  9. [9]

    J. M. Díaz-Báñez, J. A. Mesa. Fitting rectilinear polygonal curves to a set of points in the plane. European Journal of Oper. Research, 130(1), (2001), 214–222.

  10. [10]

    J. M. Díaz-Báñez, J.C. Rizo (2014). An Efficient DTW-Based Approach for Melodic Similarity in Flamenco Singing. In Similarity Search and Applications (pp. 289–300). Springer International Publishing.

  11. [11]

    J. M. Gamboa (2005). Una historia del flamenco. Espasa-Calpe, Madrid.

  12. [12]

    E. Gómez, J. Bonada. Towards computer-assisted flamenco transcription: an experimental comparison of automatic transcription algorithms as applied to a cappella singing. Computer Music Journal, 35(1), (2013), 73–90.

  13. [13]

    E. Gómez, F. Cañadas, J. Salamon, J. Bonada, P. Vera, P. Cabañas. Predominant fundamental frequency estimation vs singing voice separation for the automatic transcription of accompanied flamenco singing. Proc. 13th International Society for Music Information Retrieval Conference (ISMIR 2012).

  14. [14]

    F. Gómez, J. Mora, E. Gómez, J. M. Díaz-Báñez. Melodic Contour and Mid-Level Global Features Applied to the Analysis of Flamenco Cantes. Journal of New Music Research, 45(2), (2016), 1–15.

  15. [15]

    F. Gómez, A. Pikrakis, J. Mora, J. M. Díaz-Báñez, E. Gómez. Automatic detection of ornamentation in flamenco music. Proc. 4th International Workshop on Machine Learning and Music: Learning from Musical Structure (2011). Spain: Granada.

  16. [16]

    C. Guastavino, F. Gómez, G. T. Toussaint, F. Marandola, E. Gómez. Measuring similarity between flamenco rhythmic patterns. Journal of New Music Research, 38(2), (2009), 174–176.

  17. [17]

    K. Gustafson. A new method for displaying speech rhythm, with illustrations from some Nordic languages. Nordic Prosody IV, eds. K. Gregersen, H. Basboll, 105–114, Odense University Press (1987).

  18. [18]

    K. Gustafson. The graphical representation of rhythm. In (PROPH) Progress Report from Oxford Phonetics (Vol. 3, (1988), pp. 6–26). University of Oxford.

  19. [19]

    R. W. Hamming (1986). Coding and Information Theory. Prentice Hall, Englewood Cliffs, NJ.

  20. [20]

    W. B. Hewlett, E. Selfridge-Field, eds. (1998). Melodic Similarity: Concepts, Procedures, and Applications. MIT Press.

  21. [21]

    L. Hofmann-Engl (2002). Rhythmic similarity: A theoretical and empirical approach. In Proc. of the Seventh International Conference on Music Perception and Cognition, C. Stevens, D. Burnham, G. McPherson, E. Schubert, J. Renwick, eds. 564–567, Sidney, Australia.

  22. [22]

    A. Holzapfel (2010). Similarity methods for computational ethnomusicology. Ph.D. thesis, Computer Science Department. University of Crete.

  23. [23]

    E. Krenek (2002) Über Neue Musik. Chapter Musik und Mathematik. Verlag der Ringbuchhandlung, Vienna, 71–89, 1937.

  24. [24]

    N. Kroher, E. Gómez, E. Automatic transcription of flamenco singing from polyphonic music recordings. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 24(5), (2016), 901–913.

  25. [25]

    V. I. Levenshtein (1966). Binary codes capable of correcting deletions, insertions and reversals. In Soviet physics doklady (Vol. 10, p. 707).

  26. [26]

    R. Molina, A. Mairena (1963). Mundo y formas del cante flamenco. Ed. Revista de Occidente, Madrid.

  27. [27]

    B. Nettl (1983) The study of ethnomusicology: Twenty-nine issues and concepts (No. 39). University of Illinois Press.

  28. [28]

    N. Presmeg. The role of culture in teaching. Second Handbook of Research on Mathematics Teaching and Learning: A Project of the National Council of Teachers of Mathematics, 1, (2007), 435.

  29. [29]

    M. Schmuckler. Testing models of melodic contour similarity. Music Perception, 16, (1999), 109–150.

  30. [30]

    L. Fejes Tóth. On the sum of distances determined by a pointset. Acta. Math. Acad. Sci. Hungar. 7(3), (1956), 97–101.

  31. [31]

    G. T. Toussaint. Computational geometric aspects of rhythm, melody, and voice-leading. Computational Geometry: Theory and Applications, 43(1), (2010), 2–22.

  32. [32]

    A. Pikrakis, F. Gómez, S. Oramas, J. M. Díaz-Báñez, J. Mora, F. J. Escobar-Borrego. Tracking melodic patterns in flamenco singing by analyzing polyphonic music recordings, in Proc. of the 13th International Society for Music Information Retrieval Conference (ISMIR 2012). Porto, Portugal.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. M. Díaz-Báñez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Díaz-Báñez, J.M. Mathematics and Flamenco: An Unexpected Partnership. Math Intelligencer 39, 27–39 (2017). https://doi.org/10.1007/s00283-016-9688-4

Download citation