The Mathematical Intelligencer

, Volume 39, Issue 3, pp 27–39 | Cite as

Mathematics and Flamenco: An Unexpected Partnership

  • J. M. Díaz-Báñez


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Ascher (2000). Ethnomathematics for the geometry curriculum. MAA NOTES, 59–63.Google Scholar
  2. [2]
    B. Barton. Making sense of ethnomathematics: ethnomathematics is making sense. Educational Studies in Mathematics, 31(1–2), (1996), 201–233.Google Scholar
  3. [3]
    J. Colannino, M. Damian, F. Hurtado, J. Iacono, H. Meijer, S. Ramaswami, G. T. Toussaint. An \(O(n \log n)\)-time algorithm for the restriction scaffold assignment problem. Journal of Computational Biology, 13(4), (2006), 979–989.Google Scholar
  4. [4]
    C. Cronin. Concepts of Melodic Similarity in Music-Copyright Infringement Suits. Computing in Musicology. Walter B. Hewlett, Eleanor Selfridge-Field, eds. Cambridge: MIT Press (1998).Google Scholar
  5. [5]
    J. M. Díaz-Báñez, F. J. Escobar-Borrego. La modulación tonal en las formas musicales del Flamenco: propiedades de preferencia e hibridación armónica. Itamar. Revista de Investigación Musical: Territorios para el Arte, (2010), 261–266.Google Scholar
  6. [6]
    J. M. Díaz-Báñez, G. Farigu, F. Gómez, D. Rappaport, G. T. Toussaint. El Compás Flamenco: A Phylogenetic Analysis, Proceedings of Bridges: Mathematical Connections in Art, Music, and Science, Winfield, KS, (2004), 61–70.Google Scholar
  7. [7]
    J. M. Díaz-Báñez , G. Farigu, F. Gómez, D. Rappaport, G. T. Toussaint. Similaridad y evolución en la rítmica del flamenco: una incursión de la matemática computacional. La Gaceta de la Real Sociedad Matemática Española, 8(2), (2005), 489–509.Google Scholar
  8. [8]
    F. Gómez, J. M. Díaz-Báñez, E. Gómez, E., J. Mora. Flamenco music and its Computational Study. In Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture (2014) (pp. 119–126). Tessellations Publishing.Google Scholar
  9. [9]
    J. M. Díaz-Báñez, J. A. Mesa. Fitting rectilinear polygonal curves to a set of points in the plane. European Journal of Oper. Research, 130(1), (2001), 214–222.Google Scholar
  10. [10]
    J. M. Díaz-Báñez, J.C. Rizo (2014). An Efficient DTW-Based Approach for Melodic Similarity in Flamenco Singing. In Similarity Search and Applications (pp. 289–300). Springer International Publishing.Google Scholar
  11. [11]
    J. M. Gamboa (2005). Una historia del flamenco. Espasa-Calpe, Madrid.Google Scholar
  12. [12]
    E. Gómez, J. Bonada. Towards computer-assisted flamenco transcription: an experimental comparison of automatic transcription algorithms as applied to a cappella singing. Computer Music Journal, 35(1), (2013), 73–90.Google Scholar
  13. [13]
    E. Gómez, F. Cañadas, J. Salamon, J. Bonada, P. Vera, P. Cabañas. Predominant fundamental frequency estimation vs singing voice separation for the automatic transcription of accompanied flamenco singing. Proc. 13th International Society for Music Information Retrieval Conference (ISMIR 2012).Google Scholar
  14. [14]
    F. Gómez, J. Mora, E. Gómez, J. M. Díaz-Báñez. Melodic Contour and Mid-Level Global Features Applied to the Analysis of Flamenco Cantes. Journal of New Music Research, 45(2), (2016), 1–15.Google Scholar
  15. [15]
    F. Gómez, A. Pikrakis, J. Mora, J. M. Díaz-Báñez, E. Gómez. Automatic detection of ornamentation in flamenco music. Proc. 4th International Workshop on Machine Learning and Music: Learning from Musical Structure (2011). Spain: Granada.Google Scholar
  16. [16]
    C. Guastavino, F. Gómez, G. T. Toussaint, F. Marandola, E. Gómez. Measuring similarity between flamenco rhythmic patterns. Journal of New Music Research, 38(2), (2009), 174–176.Google Scholar
  17. [17]
    K. Gustafson. A new method for displaying speech rhythm, with illustrations from some Nordic languages. Nordic Prosody IV, eds. K. Gregersen, H. Basboll, 105–114, Odense University Press (1987).Google Scholar
  18. [18]
    K. Gustafson. The graphical representation of rhythm. In (PROPH) Progress Report from Oxford Phonetics (Vol. 3, (1988), pp. 6–26). University of Oxford.Google Scholar
  19. [19]
    R. W. Hamming (1986). Coding and Information Theory. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  20. [20]
    W. B. Hewlett, E. Selfridge-Field, eds. (1998). Melodic Similarity: Concepts, Procedures, and Applications. MIT Press.Google Scholar
  21. [21]
    L. Hofmann-Engl (2002). Rhythmic similarity: A theoretical and empirical approach. In Proc. of the Seventh International Conference on Music Perception and Cognition, C. Stevens, D. Burnham, G. McPherson, E. Schubert, J. Renwick, eds. 564–567, Sidney, Australia.Google Scholar
  22. [22]
    A. Holzapfel (2010). Similarity methods for computational ethnomusicology. Ph.D. thesis, Computer Science Department. University of Crete.Google Scholar
  23. [23]
    E. Krenek (2002) Über Neue Musik. Chapter Musik und Mathematik. Verlag der Ringbuchhandlung, Vienna, 71–89, 1937.Google Scholar
  24. [24]
    N. Kroher, E. Gómez, E. Automatic transcription of flamenco singing from polyphonic music recordings. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 24(5), (2016), 901–913.Google Scholar
  25. [25]
    V. I. Levenshtein (1966). Binary codes capable of correcting deletions, insertions and reversals. In Soviet physics doklady (Vol. 10, p. 707).Google Scholar
  26. [26]
    R. Molina, A. Mairena (1963). Mundo y formas del cante flamenco. Ed. Revista de Occidente, Madrid.Google Scholar
  27. [27]
    B. Nettl (1983) The study of ethnomusicology: Twenty-nine issues and concepts (No. 39). University of Illinois Press.Google Scholar
  28. [28]
    N. Presmeg. The role of culture in teaching. Second Handbook of Research on Mathematics Teaching and Learning: A Project of the National Council of Teachers of Mathematics, 1, (2007), 435.Google Scholar
  29. [29]
    M. Schmuckler. Testing models of melodic contour similarity. Music Perception, 16, (1999), 109–150.Google Scholar
  30. [30]
    L. Fejes Tóth. On the sum of distances determined by a pointset. Acta. Math. Acad. Sci. Hungar. 7(3), (1956), 97–101.Google Scholar
  31. [31]
    G. T. Toussaint. Computational geometric aspects of rhythm, melody, and voice-leading. Computational Geometry: Theory and Applications, 43(1), (2010), 2–22.Google Scholar
  32. [32]
    A. Pikrakis, F. Gómez, S. Oramas, J. M. Díaz-Báñez, J. Mora, F. J. Escobar-Borrego. Tracking melodic patterns in flamenco singing by analyzing polyphonic music recordings, in Proc. of the 13th International Society for Music Information Retrieval Conference (ISMIR 2012). Porto, Portugal.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Departamento de Matemática Aplicada IIUniversidad de SevillaSevillaSpain

Personalised recommendations