The Mathematical Intelligencer

, Volume 37, Issue 4, pp 12–21 | Cite as

The Fundamental Theorem of Algebra: A Visual Approach

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Abian, A new proof of the fundamental theorem of algebra, Caribbean J. Math. 5 (1986), no. 1, 9–12.Google Scholar
  2. 2.
    Jean Le Rond d’Alembert, Recherches sur le calcul integral, Hist. Acad. Sci. Berlin 2 (1746), 182–224.Google Scholar
  3. 3.
    Jean-Robert Argand, Essai sur une manière de représenter les quantités imaginaires dans les constructions géométriques, Paris, 1806.Google Scholar
  4. 4.
    Isabella Bashmakova and Galina Smirnova, The Beginnings and Evolution of Algebra, Translated from the Russian by Abe Shenitzer, with the editorial assistance of David Cox, Mathematical Association of America, Washington, DC, 2000.Google Scholar
  5. 5.
    Joseph Bennish, Another proof of the fundamental theorem of algebra, Amer. Math. Monthly 99 (1992), 426.Google Scholar
  6. 6.
    R. P. Boas, Jr., A proof of the fundamental theorem of algebra, Amer. Math. Monthly 42 (1935), 501–502.Google Scholar
  7. 7.
    R. P. Boas, Jr., Yet another proof of the fundamental theorem of algebra, Amer. Math. Monthly 71 (1964), 180.Google Scholar
  8. 8.
    John Byl, A simple proof of the fundamental theorem of algebra, Internat. J. Math. Ed. Sci. Tech. 30 (1999), no. 4, 602–603.Google Scholar
  9. 9.
    Lawrence Crone, Color graphs of complex functions, URL: http://nw08.american.edu/~lcrone/ComplexPlot.html.
  10. 10.
    William Dunham, Euler and the fundamental theorem of algebra, College Math. J. 22 (1991), 282–293.Google Scholar
  11. 11.
    Leonhard Euler, Recherches sur les racines imaginaires des équations, Mém. Acad. Sci. Berlin 5 (1749), 222–288, reprinted in Opera Omnia Series Prima, vol. 6, 78–147.Google Scholar
  12. 12.
    Frank A. Farris, Visualizing complex-valued functions in the plane, URL: http://www.maa.org/visualizing-complex-valued-functions- in-the-plane.
  13. 13.
    Charles Fefferman, An easy proof of the fundamental theorem of algebra, Amer. Math. Monthly 74 (1967), 854–855.Google Scholar
  14. 14.
    Benjamin Fine and Gerhard Rosenberger, The Fundamental Theorem of Algebra, Springer-Verlag, New York, 1997.Google Scholar
  15. 15.
    Carl Friedrich Gauss, Demonstratio nova theorematis omnem functionem algebraicum rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse, Helmstedt dissertation, 1799, reprinted in Werke, Vol. 3, 1–30.Google Scholar
  16. 16.
    Carl Friedrich Gauss, Demonstratio nova altera theorematis omnem functionem algebraicum rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse, Comm. Recentiores (Gottingae) 3 (1816), 107–142, reprinted in Werke, Vol. 3, 31–56.Google Scholar
  17. 17.
    Javier Gomez-Calderon and David M. Wells, Why polynomials have roots, College Math. J. 27 (1996), 90–91.Google Scholar
  18. 18.
    Michael D. Hirschhorn, The fundamental theorem of algebra, College Math. J. 29 (1998), 276–277.Google Scholar
  19. 19.
    Joseph-Louis Lagrange, Sur la forme des racines imaginaires des équations, Nouv. Mém. Acad. Berlin, 1772, 479–516, reprinted in Œuvres, Vol. 3, 479–516.Google Scholar
  20. 20.
    Norman Levinson and Raymond M. Redheffer, Complex Variables, Holden-Day, San Francisco, 1970.Google Scholar
  21. 21.
    MacTutor History of Mathematics Archive, The fundamental theorem of algebra, http://www-groups.dcs.st-and.ac.uk/~ history/HistTopics/Fund_theorem_of_algebra.html.
  22. 22.
    Alexander Ostrowski, Über den ersten und vierten Gausschen Beweis des Fundamentalsatzes der Algebra, in Gauss Werke, Vol. 10, Part 2, Abh. 3.Google Scholar
  23. 23.
    Raymond Redheffer, The fundamental theorem of algebra, Amer. Math. Monthly 64 (1957), 582–585.Google Scholar
  24. 24.
    R. M. Redheffer, What! Another note just on the fundamental theorem of algebra?, Amer. Math. Monthly 71 (1964), 180–185.Google Scholar
  25. 25.
    Anindya Sen, Fundamental theorem of algebra—yet another proof, Amer. Math. Monthly 107 (2000), 842–843.Google Scholar
  26. 26.
    John Stillwell, Mathematics and its History, Springer-Verlag, New York, 1989.Google Scholar
  27. 27.
    Frode Terkelsen, The fundamental theorem of algebra, Amer. Math. Monthly 83 (1976), 647.Google Scholar
  28. 28.
    Bernd Thaller, Visualization of complex functions, Mathematica J., Vol. 7, issue 2 (1998), URL: http://www.mathematica-journal. com/issue/v7i2/features/thaller/.
  29. 29.
    Bernd Thaller, Visual Quantum Mechanics: Selected Topics with Computer-Generated Animations of Quantum-Mechanical Phenomena, Springer/TELOS, New York, 2000.Google Scholar
  30. 30.
    Jean-Pierre Tignol, Galois’ Theory of Algebraic Equations, World Scientific, Singapore, 2001.Google Scholar
  31. 31.
    Daniel J. Velleman, Another proof of the fundamental theorem of algebra, Math. Mag. 70 (1997), 216–217.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsAmherst CollegeAmherstUSA

Personalised recommendations