Cognitive Bias and Claims of Quasiperiodicity in Traditional Islamic Patterns

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R. A. al Ajlouni, “The global long-range order of quasi-periodic patterns in Islamic architecture,” Acta Crystallographica A 68 (2012) 235–243.

    Article  MathSciNet  Google Scholar 

  2. 2.

    E. Baer, Islamic Ornament, Edinburgh University Press, Edinburgh, 1998.

    Google Scholar 

  3. 3.

    J. Bonner, “Three traditions of self-similarity in fourteenth and fifteenth century Islamic geometric ornament,” Proc. ISAMA/Bridges: Mathematical Connections in Art, Music and Science, (Granada, 2003), R. Sarhangi and N. Friedman, eds. 2003, pp. 1–12.

  4. 4.

    J.-M. Castéra, Arabesques: Art Décoratif au Maroc, ACR Edition, Paris, 1996.

  5. 5.

    P. R. Cromwell, “The search for quasi-periodicity in Islamic 5-fold ornament,” Math. Intelligencer 31 no 1 (2009) 36–56.

    MATH  Article  MathSciNet  Google Scholar 

  6. 6.

    P. R. Cromwell, “Hybrid 1-point and 2-point constructions for some Islamic geometric designs,” J. Math. and the Arts 4 (2010) 21–28.

    MATH  Article  Google Scholar 

  7. 7.

    P. R. Cromwell, “Islamic geometric designs from the Topkapı Scroll II: a modular design system,” J. Math. and the Arts 4 (2010) 119–136.

    MATH  Article  MathSciNet  Google Scholar 

  8. 8.

    P. R. Cromwell, “A modular design system based on the Star and Cross pattern,” J. Math. and the Arts 6 (2012) 29–42.

    MATH  Article  MathSciNet  Google Scholar 

  9. 9.

    P. R. Cromwell, “Modularity and hierarchy in Persian geometric ornament,” preprint 2013. http://www.liv.ac.uk/∼spmr02/ islamic/.

  10. 10.

    P. R. Cromwell and E. Beltrami, “The whirling kites of Isfahan: geometric variations on a theme,” Math. Intelligencer 33 no 3 (2011) 84–93.

    MATH  Article  MathSciNet  Google Scholar 

  11. 11.

    R. Elwes, Maths in 100 Key Breakthroughs, Quercus, New York, 2013.

    Google Scholar 

  12. 12.

    B. Goldacre, Bad Science, Fourth Estate, London, 2008.

    Google Scholar 

  13. 13.

    B. Grünbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1987.

  14. 14.

    B. Grünbaum and G. C. Shephard, “Interlace patterns in Islamic and Moorish art,” Leonardo 25 (1992) 331–339. Reprinted in The Visual Mind: Art and Mathematics, ed. M. Emmer, MIT Press, Cambridge, 1993, pp. 147–155.

  15. 15.

    A. J. Lee, “Islamic star patterns,” Muqarnas IV: An Annual on Islamic Art and Architecture, O. Grabar, ed. E. J. Brill, Leiden, 1987, pp. 182–197.

  16. 16.

    D. Levine and P. J. Steinhardt, “Quasicrystals I: definition and structure,” Physical Review B 34 (1986) 596–616.

    Article  Google Scholar 

  17. 17.

    P. J. Lu and P. J. Steinhardt, “Decagonal and quasi-crystalline tilings in medieval Islamic architecture,” Science 315 (23 Feb 2007) 1106–1110.

    MATH  Article  MathSciNet  Google Scholar 

  18. 18.

    R. Lück, “Penrose sublattices,” J. Non-Crystalline Solids 117–118 (1990) 832–835.

    Article  Google Scholar 

  19. 19.

    E. Makovicky, “800-year old pentagonal tiling from Maragha, Iran, and the new varieties of aperiodic tiling it inspired,” Fivefold Symmetry, I. Hargittai, ed. World Scientific, Singapore, 1992, pp. 67–86.

    Google Scholar 

  20. 20.

    E. Makovicky and P. Fenoll Hach-Alí, “Mirador de Lindaraja: Islamic ornamental patterns based on quasi-periodic octagonal lattices in Alhambra, Granada, and Alcazar, Sevilla, Spain,” Boletín Sociedad Española Mineralogía 19 (1996) 1–26.

    Google Scholar 

  21. 21.

    E. Makovicky and P. Fenoll Hach-Alí, “The stalactite dome of the Sala de Dos Hermanas—an octagonal tiling?,” Boletín Sociedad Española Mineralogía 24 (2001) 1–21.

    Google Scholar 

  22. 22.

    E. Makovicky and N. M. Makovicky, “The first find of dodecagonal quasiperiodic tiling in historical Islamic architecture,” J. Applied Crystallography 44 (2011) 569–573.

    Article  Google Scholar 

  23. 23.

    E. Makovicky, F. Rull Pérez and P. Fenoll Hach-Alí, “Decagonal patterns in the Islamic ornamental art of Spain and Morocco,” Boletín Sociedad Española Mineralogía 21 (1998) 107–127.

    Google Scholar 

  24. 24.

    I. El-Said and A. Parman, Geometric Concepts in Islamic Art, World of Islam Festival Publishing Company, London, 1976.

    Google Scholar 

  25. 25.

    R. Schekman, “How journals like Nature, Cell and Science are damaging science,” The Guardian, 9 Dec 2013.

  26. 26.

    J. E. S. Socolar, T. C. Lubensky, and P. J. Steinhardt, “Phonons, phasons, and dislocations in quasicrystals,” Physical Review B 34 (1986) 3345–3360.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter R. Cromwell.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cromwell, P.R. Cognitive Bias and Claims of Quasiperiodicity in Traditional Islamic Patterns. Math Intelligencer 37, 30–44 (2015). https://doi.org/10.1007/s00283-015-9538-9

Download citation

Keywords

  • Mathematical Intelligencer
  • Small Module
  • Penrose Tiling
  • Substitution Tiling
  • Mirror Line