Skip to main content

Paper Pentasia: An Aperiodic Surface in Modular Origami

This is a preview of subscription content, access via your institution.

References

  1. [1]

    N. G. de Bruijn. Algebraic theory of penrose’s non-periodic tilings of the plane I. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series A, 84(1):39–52, 1981.

  2. [2]

    Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press, 2007.

  3. [3]

    Tomoko Fuse. Unit Origami: Multidimensional Transformations. Japan Publications, Tokyo, Japan, 1990.

  4. [4]

    Martin Gardner. Penrose Tiles to Trapdoor Ciphers: And the Return of Dr. Matix. W. H. Freeman & Co., 1988.

  5. [5]

    Thomas Hull. Project Origami. A K Peters Ltd., 2006.

  6. [6]

    Lyman Hurd. Penrose tiles. http://library.wolfram.com/infocenter/MathSource/595/, retrieved 2012-04-09, 2010.

  7. [7]

    Kunihiko Kasahara and Toshie Takahama. Origami For the Connoisseur. Japan Publications, Tokyo, Japan, 1987.

  8. [8]

    Robert J. Lang. Penrose tiles 3D. http://www.langorigami.com/science/computational/pentasia/PenroseTiles3D.nb, retrieved 2012-07-30, 2010.

  9. [9]

    Robert J. Lang. Modular origami: the DeZZ unit. http://origamiusa.org/thefold010_lang_dezz_unit, retrieved 2012-07-30, 2012.

  10. [10]

    Jeannine Mosely. Business card menger sponge exhibit. http://theiff.org/oexhibits/menger02.html, retrieved 2012-04-04, 2006.

  11. [11]

    Jeannine Mosely. The mosely snowflake sponge. http://www.theiff.org/exhibits/sponge.html, retrieved 2012-04-04, 2012.

  12. [12]

    Meenakshi Mukerji. Marvelous Modular Origami. A K Peters Ltd., 2007.

  13. [13]

    Robert E. Neale and Thomas Hull. Origami Plain and Simple. St. Martin’s Press, 1994.

  14. [14]

    Roger Penrose. Pentaplexity. Eureka, 39:16–22, 1978.

    Google Scholar 

  15. [15]

    Roger Penrose. Pentaplexity. The Mathematical Intelligencer, 2:32–37, 1979.

  16. [16]

    Anne Preston. You were in heaven. http://www.flysfo.com/web/page/about/news/pressres/art.html, retrieved 2012-04-14, 2000.

  17. [17]

    Przemyslaw Prusinkiewicz, Aristid Lindenmayer, J. S. Hanan, and F.D. Fracchia. The Algorithmic Beauty of Plants. Springer, 1991.

  18. [18]

    Lewis Simon, Bennett Arnstein, and Rona Gurkewitz. Modular Origami Polyhedra. Dover Publications, Mineola, New York, 1999.

Download references

Acknowledgments

We thank John Conway for introducing the surface and for subsequent fruitful discussions, and Lyman Hurd, whose Mathematica™ package PenroseTiles provided a springboard for our own explorations; and we thank and acknowledge the late Thomas Rodgers for organizing the Gathering for Gardner meetings that brought us together, and of course, the late Martin Gardner, for inspiring us in our own individual ways to travel this path.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert J. Lang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lang, R.J., Hayes, B. Paper Pentasia: An Aperiodic Surface in Modular Origami. Math Intelligencer 35, 61–74 (2013). https://doi.org/10.1007/s00283-013-9405-5

Download citation

Keywords

  • Mathematical Intelligencer
  • Golden Ratio
  • Matching Rule
  • Arrow Direction
  • Penrose Tiling