The Mathematical Intelligencer

, Volume 35, Issue 4, pp 10–17 | Cite as

Challenges to the Assessment of Time-to-Proof of Mathematical Conjectures

  • Ryohei Hisano
  • Didier Sornette


Exponential Distribution Empirical Distribution Mathematical Intelligencer Mathematical Community Complementary Cumulative Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arbesman, S. and Courtland, R. (25 December 2010) 2011 preview: million-dollar mathematics problem, New Sci. 2792.Google Scholar
  2. [2]
  3. [3]
    Bolton, D. (2 Feb 2011) Time to P = NP, New Sci. 2798.Google Scholar
  4. [4]
    Eckmann, J.-P., Moses, E., and Sergi, D. (2004) Entropy of dialogues creates coherent structures in e-mail traffic, Proc. Natl. Acad. Sci. U.S.A. 101, 14333.Google Scholar
  5. [5]
    Barabasi, A.-L. (2005) The origin of bursts and heavy tails in human dynamics, Nature 435, 207.Google Scholar
  6. [6]
    Oliveira, J. G. and Barabasi, A.-L. (2005) Darwin and Einstein correspondence patterns, Nature 437, 1251.Google Scholar
  7. [7]
    Vazquez, A., Gama Oliveira, J., Dezso, Z., Goh, K. I., Kondor, I., and Barabasi, A. L. (2006) Modeling bursts and heavy tails in human dynamics, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73, 036127.Google Scholar
  8. [8]
    Grinstein, G. and Linsker, R. (2008) Power-law and exponential tails in a stochastic priority-based model queue, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77, 012101.Google Scholar
  9. [9]
    Saichev, A. and Sornette, D. (2009) Effects of diversity and procrastination in priority queuing theory: the different power law regimes, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 016108.Google Scholar
  10. [10]
    Bouchaud, J-P., Giardina, I., and Mzard, M. (2001) On a universal mechanism for long-range volatility correlations, Quant. Financ. 1, 212–216.Google Scholar
  11. [11]
    Appel, K. and Haken, W. (1977) Every planar map is four colorable, part I. discharging, Illinois J. Math. 21, 429–490.Google Scholar
  12. [12]
    Appel, K., Haken, W., and Koch, J. (1977) Every planar map is four colorable, part II. reducibility, Illinois J. Math. 21, 491–567.Google Scholar
  13. [13]
    Appel, K. and Haken, W. (1989) Every Planar Map is Four- Colorable, Providence, RI: American Mathematical Society.Google Scholar
  14. [14]
    Maillart, M., Sornette, D., Frei, S., Duebendorfer, T., and Saichev, A. (2011) Quantification of deviations from rationality from heavy-tails in human dynamics, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83, 056101.Google Scholar
  15. [15]
  16. [16]
    Giles, J. (2005) Internet encyclopedias go head to head, Nature 438, 900–901.Google Scholar
  17. [17] (maintained by Jerry Grossman at Oakland University).
  18. [18]
    Daly, D. J. and Vere-Jones, D. (2003) An Introduction to the Theory of Point Processes, Vol. 1, 2nd ed., New York, Berlin, Heidelberg: Springer.Google Scholar
  19. [19]
    Laurance, A. J. (1974) Theory of interevent interval distributions for stationary point processes, Inform. Control 25, 299–316.CrossRefGoogle Scholar
  20. [20]
    Vere-Jones, D. (1970) Stochastic Models for Earthquake Occurrence, J. R. Stat. Soc. B 32, 1–62.Google Scholar
  21. [21]
  22. [22]
    Johansen, A. and Sornette, D. (2001) Finite-time Singularity in the Dynamics of the World Population and Economic Indices. Physica A 294, 465–502.Google Scholar
  23. [23]
    Bloom, D. E. (2011) 7 Billion and counting, Science 333, 562–569.Google Scholar
  24. [24]
    Huesler, A. D. and Sornette, D. (2011) Evidence for super-exponentially accelerating atmospheric carbon dioxide growth, submitted (

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.D-MTECETH ZurichZurichSwitzerland

Personalised recommendations