The Mathematical Intelligencer

, Volume 34, Issue 4, pp 46–52 | Cite as

The Mathematics of Mathematics Houses (The Snaky Connection)

Mathematical Communities
  • 350 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Artigue, Les défis de l’enseignement des mathématiques dans la scolarité de base, Annexe 10, Paris: UNESCO, 2011.Google Scholar
  2. [2]
    A. Azarang, The Persian Tarof in Mathematics, The Mathematical Intelligencer, 33(2011), No. 4, 1–2.Google Scholar
  3. [3]
    D. Branzei, Notes on Geometry, Editura Paralela 45, Romania, 1999.Google Scholar
  4. [4]
    Edward. J. Barbeau and Peter J. Taylor, Challenging Mathematics in and Beyond the Classroom: The 16th ICMI Study, Subsection 2.4.1, Springer, 2009.Google Scholar
  5. [5]
    Alain J. Cain, Deux ex Machina, The Mathematical Intelligencer 32(2010), No. 3, 7–11.Google Scholar
  6. [6]
    N. A. Court, College Geometry, Barnes & Noble, 1952.Google Scholar
  7. [7]
    H. S. M. Coxeter, Introduction to Geometry, John Wiley, 1969.Google Scholar
  8. [8]
    H. S. M. Coxeter, The Lehmus Inequality, Aequationes Mathematicae 28(1985), 1–12.Google Scholar
  9. [9]
    D. Underwood, Mathematical Cranks, The MAA, Washington, D.C., 1992.Google Scholar
  10. [10]
    O. Ghayour, Unforgettable Proofs (A Collection of Four Popular Talks in Farsi, by O. A. S. Karamzadeh), On the Occasion of 35th Annual Iranian Mathematics Conference Held at Chamran University, published by Chamran University, 2004.Google Scholar
  11. [11]
    O. A. S. Karamzadeh, One-Line Proof of the AM-GM Inequality, The Mathematical Intelligencer 33(2011), No. 2, 3.Google Scholar
  12. [12]
    Nicholas D. Kazarinoff, Geometric Inequalities, MAA (1961).Google Scholar
  13. [13]
    N. N. Konstantinov, J. B. Tabov, and P. J. Taylor, Birth of the Tournament of Towns, Mathematics Competitions, 4(1991), No. 2, 28–41.Google Scholar
  14. [14]
    M. Lin, The AM-GM Inequality and CBS Inequality Are Equivalent, The Mathematical Intelligencer 34(2012), No. 2, 6.Google Scholar
  15. [15]
    L. Maligranda, The AM-GM Inequality is Equivalent to the Bernoulli Inequality, The Mathematical Intelligencer, 34(2012), No. 1, 1–2.Google Scholar
  16. [16]
    E. Momtahan, Incredible Results in Mathematics (A Collection of Some Popular Talks in Farsi, by O. A. S. Karamzadeh), On the Occasion of the World Mathematics Year (2000), published by Chamran University, 2000.Google Scholar
  17. [17]
    P. Nahin, When Least Is Best, Princeton University Press (paperback printing 2007).Google Scholar
  18. [18]
    A. Padoa, Una Question di Minimo, Periodico di Mathematiche, 4 (1925), 80–85.Google Scholar
  19. [19]
    M. Senechal, The Continuing Silence of Bourbaki – An interview with Pierre Carter, The Mathematical Intelligencer 20(1) (1998), 22–28.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of MathematicsShahid Chamran UniversityAhvazIran

Personalised recommendations