The Mathematical Intelligencer

, Volume 34, Issue 4, pp 21–28 | Cite as

Ugly Mathematics: Why Do Mathematicians Dislike Computer-Assisted Proofs?



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alperson, P. (2004). The Philosophy of Music: Formalism and Beyond. In P. Kivy (ed.), The Blackwell Guide to Aesthetics. Blackwell.Google Scholar
  2. Appel, K., and Haken, W. (1976). Every planar map is four colorable. Bulletin of the American Mathematical Society 82, 711–713.Google Scholar
  3. Appel, K., and Haken, W. (1977). Every planar map is four colorable. Illinois Journal of Mathematics 21, 439–567.Google Scholar
  4. Appel, K., and Haken, W. (1986). The four color proof suffices. Mathematical Intelligencer 8 (1), 10–20.Google Scholar
  5. Balaguer M. (1998). Platonism and Anti-Platonism in Mathematics: Oxford University Press.Google Scholar
  6. Benacerraf, P. (1973) Mathematical truth. Journal of Philosophy 70, 661–679.Google Scholar
  7. Davies, D. (1998). McAllister’s aesthetics in science: a critical notice. International Studies in the Philosophy of Science 12 (1), 25–32.Google Scholar
  8. De Clercq, R. (2005). Aesthetic terms, metaphor, and the nature of aesthetic properties. Journal of Aesthetics and Art Criticism 63, 27–32.Google Scholar
  9. de Villiers, M. (2004). The role and function of quasi-empirical methods in mathematics. Canadian Journal of Math Science, & Technology Education 4, 397–418.Google Scholar
  10. Dirac, P. (1980). Why We Believe in the Einstein Theory. In Gruber, B., and Millman, R. (eds.), Symmetries in Science. New York: Plenum Press, pp. 1–11.Google Scholar
  11. Dreyfus, L. H. (ed.). (2006). A Companion to Phenomenology and Existentialism. Oxford: Blackwell Publishing.Google Scholar
  12. Emmer, M. (2005). The Visual Mind II: MIT Press.Google Scholar
  13. Feynman, R. P., Leighton, R. B., and Sands, M. L. (1963). Feynman Lectures on Physics, Vol. I, Reading, Massachusetts: Addison-Wesley.Google Scholar
  14. Field H. H. (1980). Science Without Numbers: A Defence of Nominalism. Princeton University Press.Google Scholar
  15. Franks, J. (2010). Cantor’s other proofs that R is uncountable. Mathematics Magazine 83 (4), 283–289.Google Scholar
  16. Guyer, P. (2004). The Origins of Modern Aesthetics: 1711-35. In Kivy, P. (ed.), The Blackwell Guide to Aesthetics. Blackwell.Google Scholar
  17. Hardy, G. H. (1967). A Mathematician’s Apology. Cambridge: Cambridge University Press.Google Scholar
  18. Hersh, R. (1997). What Is Mathematics, Really? Oxford University Press: U.S.Google Scholar
  19. Hoffman, P. (1998). The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. Hyperion.Google Scholar
  20. Hungerland, I. C. (1962). The logic of aesthetic concepts. Proceedings and Addresses of the American Philosophical Association 36, 43–66.Google Scholar
  21. Kivy, P. (1975). What makes “aesthetic” terms aesthetic? Philosophy and Phenomenological Research 36 (2), 197–211.Google Scholar
  22. Kivy, P. (2002). Introduction to a Philosophy of Music. Oxford: Clarendon Press.Google Scholar
  23. Kivy, P. (ed.). (2004). The Blackwell Guide to Aesthetics. Malden, MA: Blackwell Publishing.Google Scholar
  24. Kuipers, T. (2002). Beauty, a road to the truth. Synthèse 31 (3), 291–328.Google Scholar
  25. McAllister, J. (1996). Beauty and Revolution in Science. Ithaca, NY: Cornell University Press.Google Scholar
  26. McAllister, J. (1998). Is beauty a sign of truth in scientific theories? American Scientist 86, 174–183.Google Scholar
  27. McAllister, J. (2005). Mathematical Beauty and the Evolution of the Standards of Mathematical Proof. In Emmer, M. (ed.), The Visual Mind II: MIT Press.Google Scholar
  28. Montaño, U. (2010). Beauty in Mathematics. Doctoral Dissertation, University of Groningen, The Netherlands.Google Scholar
  29. Nahin, P. J. (1998). An Imaginary Tale: The Story of √-1. Princeton: Princeton University Press.Google Scholar
  30. Nahin, P. J. (2006). Dr. Euler’s Fabulous Formula: Cures Many Mathematical Ills. Princeton: Princeton University Press.Google Scholar
  31. Robertson, N., et al. (1996). Efficiently Four-Coloring Planar Graphs. STOC’96: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, ACM Press, pp. 571–575.Google Scholar
  32. Rota, G. C. (1997). The phenomenology of mathematical beauty. Synthèse 111, 171–182.Google Scholar
  33. Russell, B. (2004). Mysticism and Logic: Dover Publications.Google Scholar
  34. Russell, Bertrand (1919). The Study of Mathematics. Mysticism and Logic: And Other Essays. Longman.Google Scholar
  35. Sibley, F. (1959). Aesthetic concepts. Philosophical Review 68 (4), 421–450.Google Scholar
  36. Swinnerton-Dyer, P. (2005). The justification of mathematical statements. Philosophical Transactions: Mathematical, Physical and Engineering Sciences 363 (1835), 2437–2447.Google Scholar
  37. Tymoczko, T. (1979). The four-color problem and its philosophical significance. Journal of Philosophy 76, 57–83.Google Scholar
  38. Weber, K. (2009). How syntactic reasoners can develop understanding, evaluate conjectures, and generate counterexamples in advanced mathematics. Journal of Mathematical Behavior 28, 200–208.Google Scholar
  39. Weber, K., and Alcock, L. (2004). Semantic and syntactic proof productions. Educational Studies in Mathematics 56, 209–234.Google Scholar
  40. Wells, D. (1988). Which is the most beautiful? Mathematical Intelligencer 10 (4), 30–31.Google Scholar
  41. Wells, D. (1990). Are these the most beautiful? Mathematical Intelligencer 12 (3), 37–41.Google Scholar
  42. Zangwill, N. (2001) The Beautiful, the Dainty and the Dumpy, British Journal of Aesthetics, 1995, reprinted in slightly modified form in The Metaphysics of Beauty, Ithaca: Cornell University Press.Google Scholar
  43. Zangwill, N. (2003). “Beauty.” In Levinson, J. (ed.), Oxford Companion to Aesthetics. Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.GroningenThe Netherlands

Personalised recommendations